Abstract:
Backplane optical connectors and optical connections are disclosed herein. In one embodiment, a backplane optical connector includes a ferrule element that includes a body portion having optical interface, at least two bores positioned through the body portion, at least two posts extending from the body portion, and a fiber inlet portion extending from the body portion. The fiber inlet portion includes a fiber receiving opening. The backplane optical connector further includes a magnet disposed within each bore of the at least two bores, and a bias member coupled to the at least two posts.
Abstract:
Backplane optical connectors and optical connections are disclosed herein. In one embodiment, a backplane optical connector includes a ferrule element that includes a body portion having optical interface, at least two bores positioned through the body portion, at least two posts extending from the body portion, and a fiber inlet portion extending from the body portion. The fiber inlet portion includes a fiber receiving opening. The backplane optical connector further includes a magnet disposed within each bore of the at least two bores, and a bias member coupled to the at least two posts.
Abstract:
Active optical cable assemblies and methods for thermally testing active optical cable assemblies are disclosed. In one embodiment, a method of thermally testing an active optical cable assembly includes providing electrical signals to an optical transmission module within a first connector that converts the electrical signals into optical signals for transmission over one or more optical fibers of the active optical cable assembly, and applying heat to the first connector as the electrical signals are provided to the optical transmission module. The method further includes detecting electrical signals at a second connector of the active optical cable assembly. The detected electrical signals are converted from the optical signals by an optical receiver module within the second connector. The method further includes determining if the optical transmission module satisfies a benchmark at a threshold temperature of the optical transmission module based on the electrical signals detected at the second connector.
Abstract:
Disclosed are optical plug connectors and optical receptacles for making optical connections. In one embodiment, the optical plug connector includes an optical portion having an optical interface and a cover for protecting the optical interface. The cover can translate toward the optical interface when connecting the optical plug connector and a portion of the cover allows transmission of optical signals therethrough. The cover has a sliding fit relative to a portion of the housing and may translate on at least one guide surface of the housing.
Abstract:
Gradient index (GRIN) lens holders employing groove alignment feature(s) and a recessed cover, as well as optical connectors and methods employing such GRIN lens holders, are disclosed. In one embodiment, the GRIN lens holder contains one or more internal groove alignment features configured to secure one or more GRIN lenses in the GRIN lens holder. The groove alignment features are also configured to accurately align the end faces of the GRIN lenses. The GRIN lens holder also contains a recessed cover having a front face that is negatively offset with respect to a mating surface of the GRIN lens holder. The GRIN lens holders disclosed herein can be provided as part of an optical fiber ferrule and/or a fiber optic component or connector for making optical connections.
Abstract:
An expanded-beam ferrule for an optical interface device has a ferrule body with a fiber support feature that supports an optical fiber. The ferrule body defines a lens having a planar back surface and a convex and aspheric front surface. The lens has a select amount of on-axis spherical aberration that gives rise to an improved coupling efficiency and in particular provided tolerance to misalignments between confronting expanded-beam ferrules used in an expanded-beam optical interface device. The ferrule body can also include multiple lenses and can support multiple optical fibers in operable alignment thereto.
Abstract:
Optical waveguide connector elements for optical coupling optical components of an optical assembly, such as the edge coupling of optical printed circuit boards. In one embodiment, a waveguide connector element includes a first end face and a second end face, a pre-existing optical waveguide within or on a surface of the waveguide connector element, and a laser written optical waveguide optically coupled to an end of the pre-existing optical waveguide and extending toward one of the first end face and the second end face.
Abstract:
A fiber optic connection system is disclosed for optically connecting a fiber optic connector to an internal optical interface of a device through a display surface of the device. Connecting the connector to the device causes a display alignment feature of the connector to be retained against the display surface of the device. This causes a connector optical interface in the connector to optically connect to a device optical interface through the display surface of the device when the connector is connected with the device. One benefit of this arrangement is that a device, such as a smartphone or other small form-factor device for example, may include optical communication hardware that leverages the excellent clarity and flatness of the display surface, such as a display glass for example, to form and maintain a strong fiber optic connection between the connector and the device.
Abstract:
Active optical cable assemblies and methods for thermally testing active optical cable assemblies are disclosed. In one embodiment, a method of thermally testing an active optical cable assembly includes providing electrical signals to an optical transmission module within a first connector that converts the electrical signals into optical signals for transmission over one or more optical fibers of the active optical cable assembly, and applying heat to the first connector as the electrical signals are provided to the optical transmission module. The method further includes detecting electrical signals at a second connector of the active optical cable assembly. The detected electrical signals are converted from the optical signals by an optical receiver module within the second connector. The method further includes determining if the optical transmission module satisfies a benchmark at a threshold temperature of the optical transmission module based on the electrical signals detected at the second connector.
Abstract:
Opto-electrical connection systems including opto-electrical cables providing configurable connectivity between electrical devices having electrical interfaces are disclosed. Related assemblies and methods are also disclosed. By using configurable connection assemblies having at least one configurable connection device adapted to accept optical connectors of optical fibers of opto-electrical cables, many electrical devices having electrical interfaces may be configurably connected. For example, the configurable opto-electrical connection system may be configured to provide more bandwidth and/or connect electrical devices with less power consumption than would be associated with conventional copper cabling solutions. In this manner, the high bandwidth, lower power consumption, and long distance signal capability of optical fibers may be provided to connect electronic devices which were originally designed with electrical interfaces meant to be connected with copper cables.