Abstract:
A wire-wound magnetic component includes a magnetic core, a coil set, a bobbin, an insulating wrapper, a caulking member and an ingress-protective finishing film. The magnetic core has at least one leg. The coil set is aligned and interacts with the magnetic core for electromagnetic induction, wherein the coil set includes at least one coil. The bobbin includes: a main body having a hollow portion for accommodating the leg of the magnetic core, and winding therearound a conductive wire to form the coil set, wherein the conductive wire has an unwound free end extending from the coil set; a cover plate disposed at an end of the main body and configured as a flange so as to define a winding space for accommodating the coil set; and an ingress-protective structure disposed in the winding space and separating the coil set from the cover plate.
Abstract:
A planar reactor includes a core and a coil. The core includes an upper board, a lower board and a pillar. The pillar is located between the upper board and the lower board. A winding space is located among the upper board, the lower board and the pillar. The coil is wound around the pillar and located in the winding space. The pillar and at least one of the upper board and the lower board are coplanar at a first side of the planar reactor. The pillar is sunk into the winding space from a second side of the planar reactor, wherein the first side is opposite to the second side. A first end of the coil is exposed from the first side of the planar reactor. A second end of the coil is hidden in the winding space partially or wholly at the second side of the planar reactor.
Abstract:
A planar reactor includes a core and a coil. The core includes an upper board, a lower board and a pillar. The pillar is located between the upper board and the lower board. A winding space is located among the upper board, the lower board and the pillar. The coil is wound around the pillar and located in the winding space. The pillar and at least one of the upper board and the lower board are coplanar at a first side of the planar reactor. The pillar is sunk into the winding space from a second side of the planar reactor, wherein the first side is opposite to the second side. A first end of the coil is exposed from the first side of the planar reactor. A second end of the coil is hidden in the winding space partially or wholly at the second side of the planar reactor.
Abstract:
A magnetic component includes a first core component, a second core component and at least one coil. The first core component includes a first molding bobbin covering a first part of a core set by an injection molding process. The second core component includes a second molding bobbin covering a second part of the core set by the injection molding process. The first core component is assembled with the second core component to form a first pillar and a second pillar. Each of the first pillar and the second pillar includes a plurality of cores stacked with each other in a direction toward an outside or inside of the magnetic component. The at least one coil is wound on at least one of the first pillar and the second pillar.
Abstract:
A transformer comprises a first core, a second core, a plurality of electrodes, an inner winding and an outer winding. The first core has a central hole. The second core is disposed in the central hole. The second core has two flanges and a pillar located between the two flanges. The inner winding is wound around the pillar. A first winding end of the inner winding is electrically connected to one of the electrodes. The inner winding comprises a first wire and a first insulating layer covering the first wire. The outer winding is wound around the inner winding. A second winding end of the outer winding is electrically connected to one of the electrodes. The outer winding comprises a second wire and a second insulating layer covering the second wire. Second thickness of the second insulating layer is larger than first thickness of the first insulating layer.
Abstract:
A transformer comprises a first core, a second core, a plurality of electrodes, an inner winding and an outer winding. The first core has a central hole. The second core is disposed in the central hole. The second core has two flanges and a pillar located between the two flanges. The inner winding is wound around the pillar. A first winding end of the inner winding is electrically connected to one of the electrodes. The inner winding comprises a first wire and a first insulating layer covering the first wire. The outer winding is wound around the inner winding. A second winding end of the outer winding is electrically connected to one of the electrodes. The outer winding comprises a second wire and a second insulating layer covering the second wire. Second thickness of the second insulating layer is larger than first thickness of the first insulating layer.
Abstract:
A magnetic component includes a first core, a supporting base, at least one winding, at least one insulation member and a second core. The first core has an accommodating space. The supporting base is disposed in the accommodating space and the supporting base has an electrode platform. The at least one winding is disposed in the accommodating space and stacked on the supporting base, wherein a winding end of the at least one winding is disposed on a connecting portion of the electrode platform. The at least one insulation member is disposed in the accommodating space and stacked on the at least one winding. The second core is disposed on the first core and covers the accommodating space.