摘要:
Micropolygon splatting may involve tessellating by subdividing a mesh until triangle edges are shorter than 0.75 pixels. In some cases, rasterizing the primitive may be avoided.
摘要:
Micropolygon splatting may involve tessellating by subdividing a mesh until triangle edges are shorter than 0.75 pixels. In some cases, rasterizing the primitive may be avoided.
摘要:
In order to efficiently backface cull rendering primitives during computer graphics rendering, it is important to be sure that the rendering primitives to be culled are guaranteed to be backfacing even if the primitives are moving or are undergoing defocus blur. Therefore, we derive conservative tests that determine if a moving and defocused triangle is backfacing over an entire time interval and over the area of a lens. In addition, we present tests for the special cases of only motion blur and only depth of field.
摘要:
Depth of field may be rasterized by culling half-space regions on a lens from which a triangle to be rendered is not visible. Then, inside tests are only performed on the remaining unculled half-space regions. Separating planes between the triangle to be rendered and the tile being processed can be used to define the half-space regions.
摘要:
Depth of field may be rasterized by culling half-space regions on a lens from which a triangle to be rendered is not visible. Then, inside tests are only performed on the remaining unculled half-space regions. Separating planes between the triangle to be rendered and the tile being processed can be used to define the half-space regions.
摘要:
In order to efficiently backface cull rendering primitives during computer graphics rendering, it is important to be sure that the rendering primitives to be culled are guaranteed to be backfacing even if the primitives are moving or are undergoing defocus blur. Therefore, we derive conservative tests that determine if a moving and defocused triangle is backfacing over an entire time interval and over the area of a lens. In addition, we present tests for the special cases of only motion blur and only depth of field.
摘要:
Motion blur rasterization may involve executing a first test for each plane of a tile frustum. The first test is a frustum plane versus moving bounding box overlap test where planes bounding a moving primitive are overlap tested against a screen tile frustum. According to a second test executed after the first test, for primitive edges against tile corners, the second test is a tile corner versus moving edge overlap test. The corners of the screen space tile are tested against a moving triangle edge in two-dimensional homogeneous space.
摘要:
A multi-view image may be generated by detecting discontinuities in a radiance function using multi-view silhouette edges. A multi-view silhouette edge is an edge of a triangle that intersects a back tracing plane and, in addition, the triangle faces backwards, as seen from the intersection point, and the edge is not further connected to any back facing triangles. Analytical visibility may be computed between shading points and a camera line and shared shading computations may be reused.
摘要:
Motion blur rasterization may involve executing a first test for each plane of a tile frustum. The first test is a frustum plane versus moving bounding box overlap test where planes bounding a moving primitive are overlap tested against a screen tile frustum. According to a second test executed after the first test, for primitive edges against tile corners, the second test is a tile corner versus moving edge overlap test. The corners of the screen space tile are tested against a moving triangle edge in two-dimensional homogeneous space.
摘要:
A multi-view image may be generated by detecting discontinuities in a radiance function using multi-view silhouette edges. A multi-view silhouette edge is an edge of a triangle that intersects a back tracing plane and, in addition, the triangle faces backwards, as seen from the intersection point, and the edge is not further connected to any back facing triangles. Analytical visibility may be computed between shading points and a camera line and shared shading computations may be reused.