Abstract:
A method for controlling fuel flow in a multi-fuel engine is disclosed. The method includes determining an estimated lower heating value (LHV) of a gaseous fuel by, at least, comparing a mapped volume flow value with an input volume flow value, the input volume flow value based on the input power. The method further includes determining a gaseous fuel flow rate for the gaseous fuel, the gaseous fuel flow rate based on, at least, a specific fuel substitution ratio of the gaseous fuel and a secondary fuel and the estimate LHV of the gaseous fuel source.
Abstract:
The disclosure relates to a system and method for determining the specific gravity of a fuel used in a dual fuel engine. The system includes a fuel rail, at least one sensor, and a processor. The method includes sensing and recording, with the at least one sensor and the at least one memory, a first pressure profile of a first fuel in the fuel rail and a second pressure profile of a second fuel in the fuel rail. The first fuel has a known specific gravity and the second fuel has an unknown specific gravity. The method further includes calculating the second specific gravity of the second fuel, with a processor, based on the first pressure profile, the second pressure profile, and the first specific gravity.
Abstract:
A method for estimating a specific gravity of a gaseous fuel is described. The gaseous fuel may power an engine and the engine may include a cylinder, a gas valve configured to supply an intake port of the cylinder with the gaseous fuel, a gas rail configured to deliver the gaseous fuel to the gas valve, and a microprocessor adapted to perform the method. The method may comprise establishing a pressure wave in the gas rail by opening and closing the gas valve, wherein the pressure wave travels at the speed of sound in the gaseous fuel. The method may further comprise determining a frequency of the pressure wave in the gas rail, and estimating the specific gravity of the gaseous fuel based on the frequency of the pressure wave.
Abstract:
The disclosure relates to a system and method for determining the specific gravity of a fuel used in a dual fuel engine. The system includes a fuel rail, at least one sensor, and a processor. The method includes sensing and recording, with the at least one sensor and the at least one memory, a first pressure profile of a first fuel in the fuel rail and a second pressure profile of a second fuel in the fuel rail. The first fuel has a known specific gravity and the second fuel has an unknown specific gravity. The method further includes calculating the second specific gravity of the second fuel, with a processor, based on the first pressure profile, the second pressure profile, and the first specific gravity.
Abstract:
A method for estimating a specific gravity of a gaseous fuel is described. The gaseous fuel may power an engine and the engine may include a cylinder, a gas valve configured to supply an intake port of the cylinder with the gaseous fuel, a gas rail configured to deliver the gaseous fuel to the gas valve, and a microprocessor adapted to perform the method. The method may comprise establishing a pressure wave in the gas rail by opening and closing the gas valve, wherein the pressure wave travels at the speed of sound in the gaseous fuel. The method may further comprise determining a frequency of the pressure wave in the gas rail, and estimating the specific gravity of the gaseous fuel based on the frequency of the pressure wave.