Abstract:
A method of servicing a track chain assembly includes loosening a fastener to reduce a clamping force of a track link body on a track bushing. With the clamping force reduced, the method includes rotating the track bushing from a first position wherein a worn side of the track bushing faces a drive sprocket to a second position wherein an unworn side of the track bushing faces the drive sprocket. Once the track bushing in the second position, the method includes tightening the fastener to increase the clamping force on the track bushing. The method can be performed while leaving the track chain in place on a track machine.
Abstract:
Methods of fabricating track shoes for an endless track using friction welding are provided. One method includes fabricating a track shoe by friction welding a grouser to a track shoe blank. Another method includes fabricating a track shoe by friction welding a first track shoe portion that includes a grouser to a second track shoe portion.
Abstract:
Systems and methods for command-driven automatic and semi-automatic mobile wear detection are disclosed. One method may include: transmitting, by a mobile device, a request indicative of a desire to determine a wear metric associated with a part; receiving, by the mobile device, first data associated with the part and indicative of a directive for the mobile device to display an instruction for the mobile device to be situated in a specified position; responsive to a determination, by the mobile device, that the mobile device is situated in the specified position, receiving, by a camera of the mobile device, visual data associated with the part; receiving, by the mobile device, second data indicative of a directive for the mobile device to process the visual data; determining, by the mobile device, the wear metric based, at least, on the processed visual data.
Abstract:
A method of servicing a track chain assembly includes loosening a fastener to reduce a clamping force of a track link body on a track bushing. With the clamping force reduced, the method includes rotating the track bushing from a first position wherein a worn side of the track bushing faces a drive sprocket to a second position wherein an unworn side of the track bushing faces the drive sprocket. Once the track bushing in the second position, the method includes tightening the fastener to increase the clamping force on the track bushing. The method can be performed while leaving the track chain in place on a track machine.
Abstract:
A wear monitoring system for an undercarriage component includes an ultrasonic sensor disposed on the undercarriage component. The ultrasonic sensor is configured to emit ultrasonic waves to detect wear of the undercarriage component. The wear monitoring system further includes a wear monitoring device disposed in communication with the ultrasonic sensor. The wear monitoring device is located remote to the ultrasonic sensor. Further, the wear monitoring device is configured to generate an output indicative of wear of the undercarriage component.
Abstract:
Systems and methods are disclosed for determining part wear using a mobile device. One such exemplary method includes capturing, using the mobile device, at least one digital image of a wear part of a machine. The method further includes determining, by the mobile device and based on the at least one digital image, a degree of wear of the wear part.