摘要:
An optical signal detector is provided that detects an optical signal from an optical source using a plurality of optical sensors having different wavelength selectivities, thereby determining the peak wavelength of the optical signal and measuring the power of an optical signal corresponding to the peak wavelength. According to the optical signal detector, separate optical filters are not required and space and costs attributable to the installation of the optical filters can be saved, and thus there are effects in that the overall size and manufacturing costs of the device can be reduced.
摘要:
The present invention relates to an optical power and extinction ratio controlling device and method. An optical signal output from a light source is detected and optical power and extinction ratio of the light source are controlled. In detail, a feedback signal is provided to the light source to automatically control the bias current based on a DC signal output by a photodetector detecting the optical signal. Therefore, the optical output of the light source is maintained. Also, an optical signal output by the photodetector is converted into a predetermined times DC signal, and a feedback signal is provided to the light source to automatically control the modulation current based on the DC signal. Therefore, the extinction ratio of the light source is maintained. As a result, the extinction ratio is automatically maintained to satisfy the change of condition and the characteristic of light source, thereby maintaining quality optical outputs.
摘要:
The present invention relates to an optical power and extinction ratio controlling device and method. An optical signal output from a light source is detected and optical power and extinction ratio of the light source are controlled. In detail, a feedback signal is provided to the light source to automatically control the bias current based on a DC signal output by a photodetector detecting the optical signal. Therefore, the optical output of the light source is maintained. Also, an optical signal output by the photodetector is converted into a predetermined times DC signal, and a feedback signal is provided to the light source to automatically control the modulation current based on the DC signal. Therefore, the extinction ratio of the light source is maintained. As a result, the extinction ratio is automatically maintained to satisfy the change of condition and the characteristic of light source, thereby maintaining quality optical outputs.
摘要:
The present invention relates to a light wavelength and intensity measuring device. The device automatically measures a center wavelength of the light source and an intensity of the light corresponding to the center wavelength by using a main photodetector, at least one optical filter, and at least one sub photodetector when the light source is connected to the device. The main photodetector detects the intensity of the light applied by the light source, the optical filter transmits the light corresponding to a prediscriminated transmission wavelength, and the sub photodetector detects the intensity of the light transmitted through the optical filter. Therefore, the light intensity is more accurately measured by calibrating the intensity according to the wavelength.
摘要:
The present invention relates to a light wavelength and intensity measuring device. The device automatically measures a center wavelength of the light source and an intensity of the light corresponding to the center wavelength by using a main photodetector, at least one optical filter, and at least one sub photodetector when the light source is connected to the device. The main photodetector detects the intensity of the light applied by the light source, the optical filter transmits the light corresponding to a prediscriminated transmission wavelength, and the sub photodetector detects the intensity of the light transmitted through the optical filter. Therefore, the light intensity is more accurately measured by calibrating the intensity according to the wavelength.
摘要:
A multi-channel light source generator has a pumping laser source for generating a pumping laser having a predetermined wavelength, a multi-channel light source generating device for generating multi-channel light sources using the pumping laser, a light separating device for separating the pumping laser and the multi-channel light sources, a demultiplexing device for separating the multi-channel light sources into a plurality of individual light sources, an intensity adjusting device for adjusting an intensity of the individual light sources, and a multiplexing device for combining the individual light sources outputted from the intensity adjusting device.
摘要:
A multichannel light source wavelength and strength stabilizing apparatus and a method thereof are disclosed. The apparatus includes a first proportional/integrator for receiving an output signal from the error detector, detecting a value proportional thereto, integrating the detected proportional value, generating a signal corresponding to the optimum feedback circuit, and outputting to the temperature controller; a current controller for providing the current capable of controlling the light strength in accordance with the signal inputted to the light source and stabilizing the light strength; a second optical coupling unit for dividing the output signal from the first optical coupling unit; a photodetector for converting the strength of a light among the output signals from the second optical coupling unit into an electrical signal; and a second proportional/integration unit for detecting a proportional value of the output signal from the optical detector, integrating the detected proportional value, generating a signal corresponding to the optimum feedback circuit, and outputting to the current controller.
摘要:
A wavelength aligning apparatus using an arrayed waveguide grating (AWG), and particularly, to a wavelength aligning apparatus using an arrayed waveguide grating which is capable of aligning optical sources using a transmission characteristic of an arrayed waveguide grating in a wavelength alignment method. The apparatus includes a signal generator for applying a signal spaced-apart at a predetermined interval near a predetermined frequency to a bias current of the light source and dithering a central wavelength of each light source, an arrayed waveguide grating for providing a reference wavelength causing a variation difference from the central portion due to a dithering of the central wavelength, a temperature controller for determining a reference wave length by constantly maintaining a temperature of the arrayed waveguide grating, an optical fiber coupler disposed in an output terminal of the arrayed waveguide grating for dividing the signal into a transmission signal and an incoming signal, a plurality of locking amplifiers and a proportional/integration/differentiating unit for computing a bias current corresponding to the detected error signal, and a superposing unit for superposing the computed bias current and a signal from the signal generator for output to the laser diode driver.