摘要:
A branch device that may be operable to: request to initiate access to a cloud computing application; map or link service level agreement information associated with the cloud computing application to performance and uptime specifications associated with a policy engine; and communicate with a first computational node that runs a first instance of the cloud computing application. Also, the branch device may be operable to: compare the performance data and the uptime data retrieved from the first computational node against the specifications, respectively; direct a request to the first instance, where the performance data and the uptime data at least satisfies the specifications, respectively; and direct a request to a second instance of the cloud computing application running on a second computational node, where the performance data and the uptime data do not satisfy the specifications, respectively.
摘要:
A branch device that may be operable to: request to initiate access to a cloud computing application; map or link service level agreement information associated with the cloud computing application to performance and uptime specifications associated with a policy engine; and communicate with a first computational node that runs a first instance of the cloud computing application. Also, the branch device may be operable to: compare the performance data and the uptime data retrieved from the first computational node against the specifications, respectively; direct a request to the first instance, where the performance data and the uptime data at least satisfies the specifications, respectively; and direct a request to a second instance of the cloud computing application running on a second computational node, where the performance data and the uptime data do not satisfy the specifications, respectively.
摘要:
In one implementation, a method for managing access to mobile endpoints leverages the always-on nature of a first internet layer protocol to expand the reach of a second internet layer protocol. A network device receives a request originating from a remote host. The request includes a domain name of a mobile endpoint. The network device queries a database using the domain name for a first address of the mobile endpoint as designated according to the first internet layer protocol. The network device transmits a wake up message to the mobile endpoint using the first address. A data bearer for communication with the second internet layer protocol is established based on the wake up message, and a second address is assigned to the mobile endpoint. The second address is forwarded to the remote host, allowing communication between the remote host and the mobile endpoint.
摘要:
In one implementation, a method for managing access to mobile endpoints leverages the always-on nature of a first internet layer protocol to expand the reach of a second internet layer protocol. A network device receives a request originating from a remote host. The request includes a domain name of a mobile endpoint. The network device queries a database using the domain name for a first address of the mobile endpoint as designated according to the first internet layer protocol. The network device transmits a wake up message to the mobile endpoint using the first address. A data bearer for communication with the second internet layer protocol is established based on the wake up message, and a second address is assigned to the mobile endpoint. The second address is forwarded to the remote host, allowing communication between the remote host and the mobile endpoint.
摘要:
A method is provided in one example embodiment and includes communicating an access request message associated with a mobile node, receiving an access accept message that includes domain name data associated with the mobile node, and communicating a packet data protocol (PDP) context accept message for a tracking PDP context associated with the mobile node without associating an internet protocol (IP) address to the mobile node. The tracking PDP context identifies that the mobile node is available to receive network data. In more particular embodiments, the access request message includes an International Mobile Subscriber Identity (IMSI) associated with the mobile node, and the domain name data includes a fully qualified domain name. In still other embodiments, the tracking PDP includes a protocol configuration option (PCO) indicating that an IP address is not required for the mobile node.
摘要:
Systems and methods for image processing, comprising receiving a video frame, coding a first portion of the video frame at a different quality than a second portion of the video frame, based on an optical property, and displaying the video frame.
摘要:
In one implementation, a method includes reading first component data from a first tag associated with a first component of a device. The device may be powered on or off. The first component data indicate components associated with the first component at a first time. The method may involve obtaining second component data from a second tag associated with a support structure. The second component data may indicate components disposed in the support structure at a second time. The method may also involve comparing the first component data with the second component data and determining whether the first component data match the second component data.
摘要:
A system for negotiating routable Internet Protocol (IP) addresses is provided. The system includes a communication device that is operable to transmit a request for a routable Internet Protocol (IP) address, and a cellular router in communication with the communication device. The routable IP address may be used to provide communication to the communication device. The cellular router is operable to receive the request for the routable IP address and negotiate an IP subnet. The IP subnet includes a plurality of routable IP addresses, which are allocated to the cellular router. The cellular router is operable to provide at least one of the plurality of routable IP addresses to the communication device.
摘要:
Mechanisms are provided to inventory groupings of components, e.g., the physical chassis of a networking device as well as the various cards, modules, and/or blades inserted within the chassis. The inventory may be performed remotely. Some implementations also provide mechanisms to determine remotely the physical location of the asset. Preferred implementations of the invention can provide such functionality regardless of whether a main power supply of the physical device is on or off. Some embodiments of the invention employ radio frequency identification (“RFID”) technology.
摘要:
Some implementations of the present invention provide methods and devices for detecting the theft of, and disabling, electronic devices such as computers and network devices. The devices may be disabled when a signal is not detected, e.g., for a predetermined period of time. For example, a radio frequency (“RF”) signal (e.g., a beacon), an Internet Protocol (“IP”) signal or the like may define a space within which the devices may be operated with complete functionality. Outside this space, the devices will be disabled, at least to some degree. The degree of disablement may depend on the length of time since the signal was last detected. Alternatively, the devices may be disabled when a signal is detected: some such implementations define “portals,” “choke points” or the like past which a device may not be transported without some degree of disablement.