摘要:
A logging tool having a plurality of different sensor types having close spacings mounted on an articulated or extendible pad, a sleeve, a mandrel, a stabilizer, or some combination of those is provided and used to make measurements in a wellbore in a single logging run. Those measurements are used to create images of the wellbore and the images are used to deduce the local geology, optimize well placement, perform geomechanical investigation, optimize drilling operations, and perform formation evaluation. The logging tool includes a processor capable of making those measurements, creating those images, performing those operations, and making those determinations. The plurality of different sensors may be one or more resistivity sensors, dielectric sensors, acoustic sensors, ultrasonic sensors, caliper sensors, nuclear magnetic resonance sensors, natural spectral gamma ray sensors, spectroscopic sensors, cross-section capture sensors, and nuclear sensors, and they may be “plug-and-play” sensors.
摘要:
The present disclosure relates to a method to determine the capture cross-section of a subsurface formation at a desired depth in the formation. A database of Sigma values for known lithologies, porosities, and salinities is provided, and multiple Sigma measurements are obtained from a downhole logging tool. Within the database, Sigma values are interpolated to determine the respective depths of investigation of the multiple Sigma measurements. A monotonic function is fitted to the multiple Sigma measurements at the determined depths of investigation, and the capture cross-section of the subsurface formation at any desired depth in the formation is determined using the fitted function. Similarly, a system to determine the capture cross-section of a subsurface formation at a desired depth in the formation and/or a depth of invasion of drilling fluids is also disclosed.
摘要:
The present disclosure relates to a method to determine the capture cross-section of a subsurface formation at a desired depth in the formation. A database of Sigma values for known lithologies, porosities, and salinities is provided, and multiple Sigma measurements are obtained from a downhole logging tool. Within the database, Sigma values are interpolated to determine the respective depths of investigation of the multiple Sigma measurements. A monotonic function is fitted to the multiple Sigma measurements at the determined depths of investigation, and the capture cross-section of the subsurface formation at any desired depth in the formation is determined using the fitted function. Similarly, a system to determine the capture cross-section of a subsurface formation at a desired depth in the formation and/or a depth of invasion of drilling fluids is also disclosed.
摘要:
The present disclosure relates to a method to determine a characteristic of a subsurface formation using a downhole logging tool. A downhole logging tool having the ability to make substantially concurrent disparate measurements on the subsurface formation is provided and substantially concurrent disparate measurements on the formation using the downhole logging tool are made. Those measurements are used to solve a system of equations simultaneously and the solution to the system of equations is used to determine the characteristic of the subsurface formation.
摘要:
Apparatus and methods for characterizing hydrocarbons in a subterranean formation including sending and measuring NMR signals; analyzing the signals to form a distribution; and estimating a property of a formation from the distribution, wherein the sending comprises pulse sequences configured for a formation pore size, and wherein the computing comprises porosity. Apparatus and methods for characterizing hydrocarbons in a subterranean formation including sending and measuring NMR signals; analyzing the signals to form a distribution; and estimating a property of a formation from the distribution, wherein the formation comprises a distribution of pore sizes of about 10 nm or more, and wherein the computing comprises natural gas composition.
摘要:
A technique utilizes the acquisition of data via nuclear magnetic resonance at multiple depths of investigation in a well region. The acquired data is processed to estimate variable fluid mixture densities at different radial depths. The variable fluid mixture densities and a radial response from a density tool, for example, can be used to calculate an effective fluid mixture density and used to interpret density logs. Other logs such as neutron log, induction resistivity log, and dielectric permittivity log can be combined with NMR. For these tools a corresponding effective formation property can be calculated and used to determine other formation characteristics, such as total porosity, total density, dielectric permittivity, electric resistivity, and formation characteristics derivable from these.
摘要:
A method for determining fluids in a formation. The method includes obtaining open hole measurements for a borehole in the formation; identifying points in the borehole from which to obtain pressure measurements using the open hole measurements; obtaining pressure measurements at the identified points in the borehole; applying an excess pressure technique to the pressure measurements to identify a plurality of pressure compartments in the borehole; characterizing fluid in each of the plurality of compartments; and developing a drilling plan based on characterization of fluids in each of the plurality of compartments.
摘要:
A method for estimating fluid productivity of a subsurface rock formation from within a wellbore drilled therethrough includes measuring a nuclear magnetic resonance property of the formation at a plurality of lateral depths therein. The measured nuclear magnetic resonance property is used to estimate the fluid productivity.
摘要:
A method for tuning a nuclear magnetic resonance (NMR) tool having an operating frequency and equipped with an antenna, is disclosed comprising: (a) transmitting a rf magnetic field to a sample under investigation; (b) receiving an NMR signal from the sample within a detection window; (c) determining mistuning of said antenna relative to said operating frequency; (d) analyzing the received echo signal to determine mistuning of the received signal from the operating frequency. The mistuning of the received signals from the operating frequency may be determined by analyzing any changes in phase of the echo along the echo signal. The antenna tuning process may be automated by measuring calibrated signal amplitudes at more than one frequency and identifying a maximum amplitude. The system tuning may be maintained by repeating (a) through-(d) while operating the tool and implementing a feedback loop.
摘要:
A permeability estimation technique for use with spin echo signals that are received from a sample includes summing indications of the amplitudes of the spin echo signals. The results of the summing are used to determine an indication of a permeability of the sample, without using a distribution of relaxation times in the determination. The products of indications of the amplitudes of the spin echo signals may be summed, and the results of the summing may be used to determine an indication of a permeability of the sample, without using a distribution of relaxation times in the determination.