Robust sensor correlation analysis for machine condition monitoring
    1.
    发明授权
    Robust sensor correlation analysis for machine condition monitoring 有权
    机器状态监测的鲁棒传感器相关分析

    公开(公告)号:US07769561B2

    公开(公告)日:2010-08-03

    申请号:US11563396

    申请日:2006-11-27

    IPC分类号: G06F17/18

    摘要: A method for monitoring machine conditions is based on machine learning through the use of a statistical model. A correlation coefficient is calculated using weights assigned to each sample that indicate the likelihood that that sample is an outlier. The resulting correlation coefficient is more robust against outliers. The calculation of the weight is based on the Mahalanobis distance from the sample to the sample mean. Additionally, hierarchical clustering is applied to intuitively reveal group information among sensors. By specifying a similarity threshold, the user can easily obtain desired clustering results.

    摘要翻译: 用于监测机器状况的方法是基于通过使用统计模型的机器学习。 使用分配给每个样本的权重来计算相关系数,指示该样本是异常值的可能性。 所得到的相关系数对异常值更强。 重量的计算基于从样品到样品平均值的马氏距离。 另外,应用层次聚类来直观地显示传感器之间的组信息。 通过指定相似性阈值,用户可以容易地获得所需的聚类结果。

    Robust Sensor Correlation Analysis For Machine Condition Monitoring
    2.
    发明申请
    Robust Sensor Correlation Analysis For Machine Condition Monitoring 有权
    机器状态监测的鲁棒传感器相关分析

    公开(公告)号:US20070162241A1

    公开(公告)日:2007-07-12

    申请号:US11563396

    申请日:2006-11-27

    IPC分类号: G01N37/00

    摘要: A method for monitoring machine conditions is based on machine learning through the use of a statistical model. A correlation coefficient is calculated using weights assigned to each sample that indicate the likelihood that that sample is an outlier. The resulting correlation coefficient is more robust against outliers. The calculation of the weight is based on the Mahalanobis distance from the sample to the sample mean. Additionally, hierarchical clustering is applied to intuitively reveal group information among sensors. By specifying a similarity threshold, the user can easily obtain desired clustering results.

    摘要翻译: 用于监测机器状况的方法是基于通过使用统计模型的机器学习。 使用分配给每个样本的权重来计算相关系数,指示该样本是异常值的可能性。 所得到的相关系数对异常值更强。 重量的计算基于从样品到样品平均值的马氏距离。 另外,应用层次聚类来直观地显示传感器之间的组信息。 通过指定相似性阈值,用户可以容易地获得所需的聚类结果。