摘要:
Carbon nanotubes have excellent mechanical properties such as low density, high stiffness, and exceptional strength making them ideal candidates for reinforcement material in a wide range of high-performance composites. Fibers with increased tensile strengths are produced by employing plasma treatment under various conditions. Tensile strength is improved by at least 35%, relative to an untreated fiber. Methods of making such high strength carbon nanotube fibers via plasma processing are disclosed.
摘要:
Carbon nanotubes have excellent mechanical properties such as low density, high stiffness, and exceptional strength making them ideal candidates for reinforcement material in a wide range of high-performance composites. Fibers with increased tensile strengths are produced by employing plasma treatment under various conditions. Tensile strength is improved by at least 35%, relative to an untreated fiber. Methods of making such high strength carbon nanotube fibers via plasma processing are disclosed.
摘要:
Multiple-scale self-assembled tube structures (SATS) comprising multiwall carbon nanotubes (CNT) and processes for their nucleation and growth. These hierarchical and self-assembled SATS demonstrate the feasibility of controlled synthesis of macroscopic CNT structures and CNT-reinforced materials for use in broad applications such as structures, thermal transfer, electronics, fluid dynamics, and micro-fluidics.