摘要:
A method for transferring a carbon nanotube array includes providing a substitute substrate, a growing substrate, and a carbon nanotube array. The carbon nanotube array is grown on the growing substrate. A carbon nanotube structure can be drawn from the carbon nanotube array. The carbon nanotube structure includes carbon nanotube segments joined end-to-end. The carbon nanotube array is transferred from the growing substrate onto the substitute substrate. During transfer, the structural integrity of the carbon nanotube array is maintained.
摘要:
A method for making carbon nanotube array includes providing a carbon nanotube array formed on a surface of a substrate. The carbon nanotube array is stripped from the surface of the substrate. The carbon nanotube array is suspended in an inert gas environment or a vacuum environment. A temperature of the carbon nanotube array can be in a range from about 200° C. to about 2400° C. by heating the carbon nanotube array. In a state of heating the carbon nanotube array, a plurality of carbon nanotubes of the carbon nanotube array is selected and a carbon nanotube film is pulled out by a drawing tool.
摘要:
Provided herein are carbon nanotubes conformally coated with diamond nanocrystals or silicon carbide, or both, methods of their preparation, methods of their use and compositions and materials comprising the conformally coated carbon nanotubes.
摘要:
A method for forming a carbon nanotube array is disclosed. More than one carbon nanotube array is transferred onto an accepting surface of one substitute substrate by sandwiching a liquid medium between the substitute substrate and the plurality of carbon nanotube arrays and solidifying the liquid medium into a solid medium. The solid medium is melt to form the liquid medium again. The carbon nanotube arrays are slid on the accepting surface of the substitute substrate to contact side surfaces with each other to form the carbon nanotube assembling array. A method for forming a carbon nanotube structure, such as a film, is also disclosed.
摘要:
Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.
摘要:
Methods and compositions are described for organizing nanoparticles or microparticles into nanostructures or microstructures using collagen as a template.
摘要:
A method for transferring a carbon nanotube array is disclosed. The carbon nanotube array has an ability to have a carbon nanotube structure drawn therefrom. The carbon nanotube array is transferred from a growing substrate to a substitute substrate, meanwhile the carbon nanotube array is still configured for drawing the carbon nanotube structure from the substitute substrate. A coating layer is formed on a top end of a carbon nanotube in the carbon nanotube array. The top end is away from the growing substrate. The substitute substrate is placed on the carbon nanotube array and contacted with the coating layer. Thereby the substitute substrate is combined with the carbon nanotube array by the coating layer. The substitute substrate is separated from the growing substrate. Thereby the carbon nanotube array is separated from the growing substrate. A method for making a carbon nanotube structure is also disclosed.
摘要:
Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.
摘要:
A method for forming a carbon nanotube film is provided. An elastic substitute substrate and a carbon nanotube array transferred on a surface of the elastic substitute substrate are used. The carbon nanotube array is configured for drawing a carbon nanotube film therefrom. The carbon nanotube film has carbon nanotubes joined end to end. The elastic substitute substrate is stretched along a first direction to increase a length of the carbon nanotube array along the first direction. The carbon nanotube film is drawn from the stretching carbon nanotube array along a second direction, the second direction is different from the first direction.
摘要:
A method for forming a carbon nanotube film is provided. An elastic substitute substrate and a carbon nanotube array transferred on a surface of the elastic substitute substrate are used. The carbon nanotube array is configured for drawing a carbon nanotube film therefrom. The carbon nanotube film has carbon nanotubes joined end to end. At least one groove is formed on the carbon nanotube array. A length direction of the at least one groove is along a second direction. The elastic substitute substrate is stretched along a first direction to increase a length of the carbon nanotube array along the first direction. The carbon nanotube film is drawn from the stretching carbon nanotube array along the second direction. The second direction is perpendicular to the first direction.