Abstract:
Methods and systems for imaging by using a filter for Time-Of-Flight Positron Emission Tomography (TOF PET) are described. The described methods of imaging a patient by using a positron emission tomography (PET) system includes acquiring a plurality of frames of sinogram data, filtering the acquired sinogram data and back-projecting the filtered sinogram data to form an output image of the patient. The acquired sinogram data defines a line of response (LOR) and a time-of-flight (TOF) measurement that localizes positron annihilation within the patient. The filtering of the acquired sinogram data is performed using the TOF measurement.
Abstract:
A method and system for reconstructing an image in a time-of-flight (TOF) positron emission tomography (PET) system is provided. The method includes using a reconstructed image to determine predicted timing information. Timing bias data is updated based on received timing information associated with acquired scan data from a PET system and the predicted timing information. The method further includes reconstructing the image, based on the updated timing bias data.
Abstract:
Methods and systems for calibrating a positron emission tomography (PET) system are provided. The method includes determining at least one non-acquisition time period for the PET system. The method further includes automatically acquiring calibration data during the at least one non-acquisition time period.
Abstract:
Methods and systems for image overlap correction are provided. The method includes acquiring the emission projection data from a plurality of scan frames that extend across at least a portion of a length of an object being imaged wherein elements of the object lie between a region of overlap between two successive frames. The method further includes iteratively reconstructing a 3D image volume from multi-frame emission projection data by updating an estimate of 3D image volume using emission projection data from the plurality of frames within an iterative reconstruction loop.
Abstract:
The invention is directed to a technique for reconstructing PET scan images. According to one embodiment, the invention relates to a method for reconstructing PET scan images. The method comprises: detecting a plurality of coincidence events in a PET scanner; storing data associated with the plurality of coincidence events in a chronological list based on a detection time for each of the plurality of coincidence events; generating correction data based on scatter coincidence events and random coincidence events in the plurality of coincidence events; and reconstructing one or more PET scan images based at least in part on the chronological list of data and the correction data.
Abstract:
A method and system for controlling a positron emission tomography (PET) system is disclosed. The method includes acquiring image data and time-of-flight information from a PET system during an imaging scan. Further, the method includes performing scatter correction on the image data using the time-of-flight information.
Abstract:
Methods and systems for providing scatter correction in a positron emission tomography (PET) system are provided. The method includes determining a look-up table of scatter sinograms during a PET acquisition scan period. The method further includes scatter correcting acquired scan data obtained during the PET acquisition scan period.
Abstract:
Methods and systems for controlling a positron emission tomography (PET) system are provided. The method includes receiving timing information from a PET system during an imaging scan using the PET system. The method further includes processing the received timing information and timing bias information relating to the PET system to control the PET system.
Abstract:
A Nuclear Medicine (NM) imaging system and method using multiple types of imaging detectors are provided. One NM imaging system includes a gantry, at least a first imaging detector coupled to the gantry, wherein the first imaging detector is a non-moving detector, and at least a second imaging detector coupled to the gantry, wherein the second imaging detector is a moving detector. The first imaging detector is larger than the second imaging detector and the first and second imaging detectors have different detector configurations. The NM imaging system further includes a controller configured to control the operation of the first and second imaging detectors during an imaging scan of an object to acquire Single Photon Emission Computed Tomography (SPECT) image information such that at least the first imaging detector remains stationary with respect to the gantry during image acquisition.
Abstract:
A method and system for calibrating a time of flight (TOF) positron emission tomography (PET) scanner are provided. The method stores acquired scan data from detector pairs including data and timing information. The method further calculates an intensity distribution of emission sources based on the scan data and defines a timing pivot point based on a median of an intensity histogram. The method determines a timing correction for each detector based on the location of the timing pivot point. The positron emission tomography (PET) system further provides a plurality of detectors, used in performing imaging scans, and a processor. The processor is configured to determine a timing correction for each detector.