摘要:
A system and method of verifying data transferred along a data path from one buffer, such as a user buffer in the host system to a second buffer, such as a disc drive buffer on a disc drive system by using the receiving device to test the information and provide a confirmation or error signal to the sending device. The system and method appends non-abstract identification tags to the abstract data in the first buffer, i.e., the data to be stored to and/or read from the storage device. The tags are transmitted along with the abstract data and provide unique information that is used by either the disc drive device or the host system to validate data received from the other. The validation is based on a comparison of the tag values to a predetermined control value that may be received prior to receiving the abstract data.
摘要:
Data storage systems are provided. Some embodiments of data storage systems include a storage device controller and a plurality of storage devices. The plurality of storage devices are illustratively in a redundancy scheme and the storage device controller receives from the plurality of storage devices a plurality of symbols. In one embodiment, each of the plurality of symbols is representative of data in the redundancy scheme, and the storage device controller verifies the consistency of the redundancy scheme based at least in part on the plurality of symbols.
摘要:
Systems and methods of storing error correction data are provided. A method may include storing data at a first memory having a first non-volatile memory type. The method may also include determining error correction data related to the stored data. The method may further include storing the error correction data at a second memory having a second non-volatile memory type. The first non-volatile memory may have a slower random access capability than the second non-volatile memory.
摘要:
An information handling system, such as a disc drive, includes a controller that communicates with other devices in a loop, and performs distributed or peer-to-peer loop error diagnostics. One example of a loop is a fiber channel arbitrated loop. Distributed or peer-to-peer loop error diagnostics identifies and diagnoses errors in the immediately upstream device and the immediately upstream link by monitoring the error count to determine of the error count is increasing or not. An increasing error count or a changed loop configuration indicates that the source of the error is not the upstream device, while an unchanging error count and an unchanged loop configuration indicates that the source of the error is the upstream link.
摘要:
A variety of data storage devices, methods and systems are implemented for control of memory associated with backup functionality. One such data storage device includes a power circuit that provides main power. The data storage device has a first solid-state memory circuit that maintains data in the absence of electrical power. A second memory circuit is subject to data loss in the absence of electrical power. A storage circuit stores energy and provides the stored energy to the second memory circuit in response to a loss of main power. A test circuit discharges a portion of the stored energy to provide output data indicative of power-providing capabilities of the storage circuit. A memory controller controls data transfers to the data storage device by temporarily storing data destined for the first solid-state memory circuit and setting the amount of memory available for temporary storage in response to the output data.
摘要:
Systems and methods of storing error correction data are provided. A method may include storing data at a first memory having a first non-volatile memory type. The method may also include determining error correction data related to the stored data. The method may further include storing the error correction data at a second memory having a second non-volatile memory type. The first non-volatile memory may have a slower random access capability than the second non-volatile memory.
摘要:
A variety of data storage devices, methods and systems are implemented for control of memory associated with backup functionality. One such data storage device includes a power circuit that provides main power. The data storage device has a first solid-state memory circuit that maintains data in the absence of electrical power. A second memory circuit is subject to data loss in the absence of electrical power. A storage circuit stores energy and provides the stored energy to the second memory circuit in response to a loss of main power. A test circuit discharges a portion of the stored energy to provide output data indicative of power-providing capabilities of the storage circuit. A memory controller controls data transfers to the data storage device by temporarily storing data destined for the first solid-state memory circuit and setting the amount of memory available for temporary storage in response to the output data.