Abstract:
The present invention relates to a magnetic field adjusting device; such as may be used in MRI apparatus. The device can overcome the magnetic force to enable shimming plugs to move in a controlled continuous manner, thereby achieving continuous adjusting and accurate positioning. The magnetic field adjusting device comprises; a pair of opposing pole plates (3, 31), respectively mounted on magnetic field generating sources, forming a magnetic field space; a plurality of shimming plugs (42) movably mounted at the periphery of said pole plates (3, 31), each shimming plug (42) mounted in a radially oriented retaining groove (45), so as to be moveable in the direction of the retaining groove. Additionally, or alternatively, the circumferences of the magnetic field generating sources (5, 51) are arranged with adjusting bars (71, 81) which can move perpendicular to the pole plates. As an advantage of the present invention, the magnetic field can be shimmed conveniently quickly, and accurately to improve the imaging quality.
Abstract:
The present invention relates to a magnetic field adjusting device; such as may be used in MRI apparatus. The device can overcome the magnetic force to enable shimming plugs to move in a controlled continuous manner, thereby achieving continuous adjusting and accurate positioning. The magnetic field adjusting device comprises; a pair of opposing pole plates (3, 31), respectively mounted on magnetic field generating sources, forming a magnetic field space; a plurality of shimming plugs (42) movably mounted at the periphery of said pole plates (3, 31), each shimming plug (42) mounted in a radially oriented retaining groove (45), so as to be movable in the direction of the retaining groove. Additionally, or alternatively, the circumferences of the magnetic field generating sources (5, 51) are arranged with adjusting bars (71, 81) which can move perpendicular to the pole plates. As an advantage of the present invention, the magnetic field can be shimmed conveniently quickly, and accurately to improve the imaging quality.
Abstract:
A magnetic field adjusting device includes a pair of opposing pole plates mounted on respective magnetic field generating sources, forming a magnetic field space; a plurality of shimming plugs movably mounted at the periphery of the pole plates, with each shimming plug being mounted in a radially oriented retaining groove, so as to be moveable in the direction of the retaining groove. Additionally, or alternatively, the circumferences of the magnetic field generating sources are arranged with adjusting bars which can move perpendicular to the pole plates.
Abstract:
In a magnetic resonance imaging apparatus and a method for shimming such an apparatus, at each of mirror-symmetrical assemblies respectively disposed at opposite faces of a static magnetic field generator, that each include a shimming ring, an additional shimming ring is provided that is adjustable in position relative to the other shimming ring to shim the static magnetic field. Additionally or alternatively, at each face of the static magnetic field generator, a permanently magnetic arrangement is provided that is divided into a number of permanently magnetic columns respectively having different energy levels. Additionally or alternatively, magnetic bolts, such as magnetically conducting bolts or permanently magnetic bolts can be symmetrically inserted into either of the mirror-symmetric assemblies, or the permanently magnetic columns, for additionally shimming adjustment.
Abstract:
A patient table includes a table body configured for bearing a patient, a connecting rod structure configured for supporting the table body, and a spring structure. The connecting rod structure is operable such that the table body may perform a lifting motion between a high position and a low position. Both ends of the spring structure are fixed. At least a first end of the spring structure is hinged to the connecting rod structure. The spring structure may be used for driving the lifting motion of the connecting rod structure and/or bearing the table body. The patient table may be used for nuclear magnetic resonance imaging equipment.
Abstract:
In a high field magnetic resonance imaging apparatus and a method for obtaining signals having a high signal-to-noise ratio with the receiving coil thereof, the apparatus has at least a basic magnet and a receiving coil, the basic magnet generating a basic magnetic field, and the receiving coil being disposed within the basic magnetic field and forming an accommodating cavity. The accommodating cavity of the receiving coil is perpendicular to the direction of the basic magnetic field and is positioned in the field of view of the apparatus. The receiving coil is a loop type coil. The apparatus can further have a bracket for fixing the receiving coil. In the method, a receiving coil is used to receive signals in a magnetic field, wherein the receiving coil is perpendicular to the direction of the magnetic field. By using the apparatus and the corresponding method since the receiving coil can have a loop type design, the signal-to-noise ratio is increased. Moreover, the receiving coil can be disposed at a position closer to the center of the field of view, so that the imaging quality is improved.
Abstract:
A mobile positioning device for an MRI inductively coupled coil, has at least one pair of coupled coils which are coupled with each other for transmitting signals, wherein one of the at least one pair of coupled coils is deployed on a surface of a patient's bed. A moveable platform is provided that can move in a direction parallel to the patient's bed, and the other one of the at least one pair of coupled coils is deployed on the moveable platform opposite to the coupled coil deployed on the patient's bed. The device can be driven by a motor or a spring. When the patient's bed needs to be placed at different positions for an examination, the coupled coil deployed on the moveable platform can be aligned completely and in parallel to the coupled coil fixed on the patient's bed by moving the moveable platform, so as to achieve the best coupling effects.
Abstract:
In a high field magnetic resonance imaging apparatus and a method for obtaining signals having a high signal-to-noise ratio with the receiving coil thereof, the apparatus has at least a basic magnet and a receiving coil, the basic magnet generating a basic magnetic field, and the receiving coil being disposed within the basic magnetic field and forming an accommodating cavity. The accommodating cavity of the receiving coil is perpendicular to the direction of the basic magnetic field and is positioned in the field of view of the apparatus. The receiving coil is a loop type coil. The apparatus can further have a bracket for fixing the receiving coil. In the method, a receiving coil is used to receive signals in a magnetic field, wherein the receiving coil is perpendicular to the direction of the magnetic field. By using the apparatus and the corresponding method since the receiving coil can have a loop type design, the signal-to-noise ratio is increased. Moreover, the receiving coil can be disposed at a position closer to the center of the field of view, so that the imaging quality is improved.
Abstract:
A mobile positioning device for an MRI inductively coupled coil, has at least one pair of coupled coils which are coupled with each other for transmitting signals, wherein one of the at least one pair of coupled coils is deployed on a surface of a patient's bed. A moveable platform is provided that can move in a direction parallel to the patient's bed, and the other one of the at least one pair of coupled coils is deployed on the moveable platform opposite to the coupled coil deployed on the patient's bed. The device can be driven by a motor or a spring. When the patient's bed needs to be placed at different positions for an examination, the coupled coil deployed on the moveable platform can be aligned completely and in parallel to the coupled coil fixed on the patient's bed by moving the moveable platform, so as to achieve the best coupling effects.
Abstract:
A connector and medical equipment are provided. The connector includes at least one framework and at least one fastening structure. The at least one connector is used to connect a main body and a housing. The at least one framework is arranged along the outside of the main body. The fastening structure is located on the at least one framework. The at least one fastening structure is used to connect the housing.