Extended Isenthalpic and/or Isothermal Flash Calculation for Hydrocarbon Components That Are Soluble in Oil, Gas and Water

    公开(公告)号:US20180045046A1

    公开(公告)日:2018-02-15

    申请号:US15557800

    申请日:2016-03-22

    Abstract: A method, apparatus, and program product to determine distribution of a plurality of components amongst a plurality of phases for a multi-component, multi-phase system including a multi-component, multi-phase fluid. A plurality of phase boundaries of the multi-component, multi-phase fluid and a vapor-liquid equilibrium (VLE) are determined based on a plurality of geophysical parameters associated with an oilfield and using one or more computer processors, including by determining hydrocarbon partitioning in a water phase, based in part on applying empirical equilibrium multi-phase mole fraction ratios (K-values) of the multi-component, multi-phase system that are functions of temperature and pressure only. In addition, an amount of at least one fluid component distributed in a plurality of phases of the multi-component, multi-phase system is predicted by solving a set of flash equations with the one or more computer processors based on the plurality of phase boundaries.

    ASPHALTENE SIMULATION USING A PSEUDO-COMPONENT FRAMEWORK

    公开(公告)号:US20240428899A1

    公开(公告)日:2024-12-26

    申请号:US18340492

    申请日:2023-06-23

    Abstract: Asphaltene simulation is performed by modeling asphaltene using physical changes. A pseudo-component framework is used to simulate asphaltene precipitation, asphaltene flocculation, and asphaltene deposition in a subsurface region. The pseudo-component framework for asphaltene simulation treats asphaltene precipitation, asphaltene flocculation, and asphaltene deposition as physical changes of a single component, rather than as chemical changes. Use of the pseudo-component framework for asphaltene simulation reduces complexity of asphaltene simulation. For example, use of the pseudo-component framework for asphaltene simulation enables tracking of asphaltene as it is found in different states (precipitated, flocculated, deposited). Use of the pseudo-component framework for asphaltene simulation enables chemical reactions to be replaced by a flash and adsorption framework. Asphaltene simulation using the pseudo-component framework exhibits stable and fast convergence.

Patent Agency Ranking