Abstract:
A mechanical constant-resistance single prop continuous prop lifting pre-tightening device, structurally composed of a continuous prop lifting device, a pressurizing system, an oil supply line and a monitoring unit. The continuous prop lifting device is a core component, comprising a hydraulic cylinder, a prop barrel clamping sleeve ring and a prop rod clamping sleeve ring. The prop rod clamping sleeve ring is fixedly connected with a piston rod of the hydraulic cylinder by means of a cylinder head seat, and the prop barrel clamping sleeve ring is fixedly connected with a cylinder body of the hydraulic cylinder. With continuous pressurization of the pressurizing system, a cohesion occurs between the continuous prop lifting device and a prop rod, so that the prop rod of a single prop is lifted up to come into contact with a top plate and provide a pre-tightening force.
Abstract:
A method for removing a hydraulic support for solid filling coal mining includes digging a support removing channel (3) in a coal body (2) in front of the hydraulic support (1), and laying a support removing track (4), then removing the hydraulic support from a coal conveying gateway (11) to a track gateway (5), temporary supporting is carried out by matching a single supporting column with a n-type steel beam before each hydraulic support is removed. A supporting roof is reinforced in time by means of erecting a crib (13) and grouting after each hydraulic support is removed, three grouting pipelines (12) are laid after the supports of the whole work surface are removed, and grouting is carried out in the whole finishing cut space. The roof of the support removing space of the work surface is stable so that the hydraulic supports on the work surface of solid filling coal mining are ensured to be safely and efficiently removed.
Abstract:
A mine exploitation method based on stoping, separation and filling control is disclosed herein. The method includes deploying a gangue-less coal mining system; choosing a suitable coal and gangue separation method according to a separation requirement; choosing a suitable filling method according to mine geology, production conditions and rock stratum control requirement; reversely calculating a filling rate according to gangue discharge requirement and control indexes by utilizing theoretical calculation, simulation and experiment; determining a filling process and a separation process according to the filling rate; and feeding back and adjusting the filling process and separation process parameters by monitoring filling and control effect indexes.
Abstract:
A method for controlling a subsidence area caused by underground mining in an adjoining open-pit mine, applied in an open-pit and underground coordinated mining process. In the method, a ground subsidence area caused by underground mining and production is directly filled and covered with overburden materials such as soil and rock discharged from an adjoining open-pit mine; small and medium fracture zones and large fracture zones caused by mining are timely backfilled, tamped, and levelled according to areas before the ground subsidence area appears, the thickness of the levelled soil layer is kept above 1 m, and the area slope is controlled within 7°. By fully using overburden materials from an adjoining open-pit mine, the method controls a subsidence area caused by underground mining and greatly shortens the discharge distance of the overburden materials from the adjoining open-pit mine, also solves the safety problems such as air leakage and spontaneous combustion of coal caused by fractures in mine subsidence, and brings significant economic and social benefits.
Abstract:
A method for controlling a subsidence area caused by underground mining in an adjoining open-pit mine, applied in an open-pit and underground coordinated mining process. In the method, a ground subsidence area caused by underground mining and production is directly filled and covered with overburden materials such as soil and rock discharged from an adjoining open-pit mine; small and medium fracture zones and large fracture zones caused by mining are timely backfilled, tamped, and levelled according to areas before the ground subsidence area appears, the thickness of the levelled soil layer is kept above 1 m, and the area slope is controlled within 7°. By fully using overburden materials from an adjoining open-pit mine, the method controls a subsidence area caused by underground mining and greatly shortens the discharge distance of the overburden materials from the adjoining open-pit mine, also solves the safety problems such as air leakage and spontaneous combustion of coal caused by fractures in mine subsidence, and brings significant economic and social benefits.
Abstract:
In an inclined layered solid-filling mining method in an ultrathick coal layer, tunnels and equipment are arranged according to a solid-filling mining method. An artificial roof for a lower layer is formed by metal meshes and bamboo fences of a first layer a solid-filling mining method. The method is repeated, until the entire ultrathick coal layer is finished. The method is repeated forming additional roofs for subsequent layers.
Abstract:
An inclined layered solid-filling mining method in an ultrathick coal layer is applicable to exploitation in a “three-unders” ultrathick coal layer. In this method, the number of inclined layers is determined based on a principle of layered thickness from 2.5 m to 4.5 m, and a layered-exploitation downward-filling exploitation order is adopted. Tunnels and equipment are arranged according to a conventional solid-filling mining method. A cyclic order of mining, layout of metal meshes (14) and bamboo fences (24), and filling is adopted, so as to accomplish filling and exploitation of a first mining face and a first layer (21). Meanwhile, 4 months after the working face of this layer is finished, at a corresponding position in a second layer (22), under the cover of an artificial ceiling formed by the first layer (21), exploitation is performed by using the same filling mining method; such a cycle is repeated, and exploitation in a current layer is performed under the cover of an artificial ceiling fabricated by an upper layer, until the entire ultrathick coal layer is finished. When this method is adopted to exploit “three-unders” ultrathick coal layer resources, strata movement and earth surface subsidence may be effectively controlled; the method has a high extraction rate, high production efficiency, and low cost.