摘要:
Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amine-based group is introduced is coordinated, a method of synthesizing the same, and olefin polymerization using the transition metal complex In the novel transition metal complex, an imino phenyl group is not cross-linked to a metal atom and directly introduced to a cyclopentadiene (Cp) ring. The catalyst composition including the transition metal compound is used to obtain a polyolefin copolymer having a very low density less than 0.910 g/cc.
摘要:
Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido or alcoxy group is introduced is coordinated, a method of synthesizing the same, and olefin polymerization using the transition metal complex. Compared to a conventional transition metal complex having a silicon bridge and an oxido ligand, the transition metal complex has a phenylene bridge, so that a monomer easily approaches the transition metal complex in terms of structure and a pentagon ring structure of the transition metal complex is stably maintained. The catalyst composition including the transition metal complex is used to synthesize a polyolefin copolymer having a very low density less than 0.910 g/cc.
摘要:
Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido or alcoxy group is introduced is coordinated, a method of synthesizing the same, and olefin polymerization using the transition metal complex. Compared to a conventional transition metal complex having a silicon bridge and an oxido ligand, the transition metal complex has a phenylene bridge, so that a monomer easily approaches the transition metal complex in terms of structure and a pentagon ring structure of the transition metal complex is stably maintained. The catalyst composition including the transition metal complex is used to synthesize a polyolefin copolymer having a very low density less than 0.910 g/cc.
摘要:
Provided are a bridged metallocene compound particularly suitable for copolymerization of ethylene and alpha-olefin or cyclic olefin, a process of preparing the metallocene compound, and a process of preparing polyolefin using the metallocene compound. The bridged metallocene compound has low steric hindrance and good (co)polymerization activity, and thus, exhibits good activity in copolymerization of ethylene and alpha-olefin such as 1-hexene or 1-octene. Furthermore, the process of preparing the bridged metallocene compound is simplified, and thus, suitable for mass production.
摘要:
Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amine-based group is introduced is coordinated, a method of synthesizing the same, and olefin polymerization using the transition metal complex In the novel transition metal complex, an imino phenyl group is not cross-linked to a metal atom and directly introduced to a cyclopentadiene (Cp) ring. The catalyst composition including the transition metal compound is used to obtain a polyolefin copolymer having a very low density less than 0.910 g/cc.
摘要:
Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido or alcoxy group is introduced is coordinated, a method of synthesizing the same, and olefin polymerization using the transition metal complex. Compared to a conventional transition metal complex having a silicon bridge and an oxido ligand, the transition metal complex has a phenylene bridge, so that a monomer easily approaches the transition metal complex in terms of structure and a pentagon ring structure of the transition metal complex is stably maintained. The catalyst composition including the transition metal complex is used to synthesize a polyolefin copolymer having a very low density less than 0.910 g/cc.
摘要:
Provided are a bridged metallocene compound particularly suitable for copolymerization of ethylene and alpha-olefin or cyclic olefin, a process of preparing the metallocene compound, and a process of preparing polyolefin using the metallocene compound. The bridged metallocene compound has low steric hindrance and good (co)polymerization activity, and thus, exhibits good activity in copolymerization of ethylene and alpha-olefin such as 1-hexene or 1-octene. Furthermore, the process of preparing the bridged metallocene compound is simplified, and thus, suitable for mass production.