摘要:
A method for generating a positron emission tomography (PET) attenuation correction map from magnetic resonance (MR) images includes segmenting a 3-dimensional (3D) magnetic resonance (MR) whole-body image of a patient into low-signal regions, fat regions, and soft tissue regions; classifying the low-signal regions as either lungs, bones, or air by identifying lungs, identifying an abdominal station, and identifying a lower body station; and generating an attenuation map from the segmentation result by replacing the segmentation labels with corresponding representative attenuation coefficients.
摘要:
A method for generating a positron emission tomography (PET) attenuation correction map from magnetic resonance (MR) images includes segmenting a 3-dimensional (3D) magnetic resonance (MR) whole-body image of a patient into low-signal regions, fat regions, and soft tissue regions; classifying the low-signal regions as either lungs, bones, or air by identifying lungs, identifying an abdominal station, and identifying a lower body station; and generating an attenuation map from the segmentation result by replacing the segmentation labels with corresponding representative attenuation coefficients.
摘要:
A method for unsupervised classification of histological images of prostatic tissue includes providing histological image data obtained from a slide simultaneously co-stained with NIR fluorescent and Hematoxylin-and-Eosin (H&E) stains, segmenting prostate gland units in the image data, forming feature vectors by computing discriminating attributes of the segmented gland units, and using the feature vectors to train a multi-class classifier, where the classifier classifies prostatic tissue into benign, prostatic intraepithelial neoplasia (PIN), and Gleason scale adenocarcinoma grades 1 to 5 categories.
摘要:
A method for unsupervised classification of histological images of prostatic tissue includes providing histological image data obtained from a slide simultaneously co-stained with NIR fluorescent and Hematoxylin-and-Eosin (H&E) stains, segmenting prostate gland units in the image data, forming feature vectors by computing discriminating attributes of the segmented gland units, and using the feature vectors to train a multi-class classifier, where the classifier classifies prostatic tissue into benign, prostatic intraepithelial neoplasia (PIN), and Gleason scale adenocarcinoma grades 1 to 5 categories.