摘要:
A method for generating a positron emission tomography (PET) attenuation correction map from magnetic resonance (MR) images includes segmenting a 3-dimensional (3D) magnetic resonance (MR) whole-body image of a patient into low-signal regions, fat regions, and soft tissue regions; classifying the low-signal regions as either lungs, bones, or air by identifying lungs, identifying an abdominal station, and identifying a lower body station; and generating an attenuation map from the segmentation result by replacing the segmentation labels with corresponding representative attenuation coefficients.
摘要:
A method for generating a positron emission tomography (PET) attenuation correction map from magnetic resonance (MR) images includes segmenting a 3-dimensional (3D) magnetic resonance (MR) whole-body image of a patient into low-signal regions, fat regions, and soft tissue regions; classifying the low-signal regions as either lungs, bones, or air by identifying lungs, identifying an abdominal station, and identifying a lower body station; and generating an attenuation map from the segmentation result by replacing the segmentation labels with corresponding representative attenuation coefficients.
摘要:
A method for performing motion compensation in a series of magnetic resonance (MR) images includes acquiring a set of MR image frames spanning different points along an MR recovery curve. A motion-free synthetic image is generated for each of the acquired MR image frames using prior knowledge pertaining to an MR recovery curve. Each of the acquired MR images is registered to its corresponding generated synthetic images. Motion within each of the acquired MR image is corrected based on its corresponding generated synthetic image that has been registered thereto.
摘要:
A method for performing motion compensation in a series of magnetic resonance (MR) images includes acquiring a set of MR image frames spanning different points along an MR recovery curve. A motion-free synthetic image is generated for each of the acquired MR image frames using prior knowledge pertaining to an MR recovery curve. Each of the acquired MR images is registered to its corresponding generated synthetic images. Motion within each of the acquired MR image is corrected based on its corresponding generated synthetic image that has been registered thereto.
摘要:
A method of aligning a pair of images with a first image and a second image, wherein said images comprise a plurality of intensities corresponding to a domain of points in a D-dimensional space includes identifying feature points on both images using the same criteria, computing a feature vector for each feature point, measuring a feature dissimilarity for each pair of feature vectors, wherein a first feature vector of each pair is associated with a first feature point on the first image, and a second feature vector of each pair is associated with a second feature point on the second image. A correspondence mapping for each pair of feature points is determined using the feature dissimilarity associated with each feature point pair, and an image transformation is defined to align the second image with the first image using one or more pairs of feature points that are least dissimilar.
摘要:
Exemplary systems and methods for performing registration applications are provided. An exemplary system includes a central processing unit (CPU) for transferring a plurality of images to a graphics processing unit (GPU); wherein the GPU performs a registration application on the plurality of images to produce a registration result, and wherein the GPU returns the registration result to the CPU. An exemplary method includes the steps of transferring a plurality of images from a central processing unit (CPU) to a graphics processing unit (GPU); performing a registration application on the plurality of images using the GPU; transferring the result of the step of performing from the GPU to CPU.
摘要:
Exemplary systems and methods for performing registration applications are provided. An exemplary system includes a central processing unit (CPU) for transferring a plurality of images to a graphics processing unit (GPU); wherein the GPU performs a registration application on the plurality of images to produce a registration result, and wherein the GPU returns the registration result to the CPU. An exemplary method includes the steps of transferring a plurality of images from a central processing unit (CPU) to a graphics processing unit (GPU); performing a registration application on the plurality of images using the GPU; transferring the result of the step of performing from the GPU to CPU.
摘要:
A system and method for colon unfolding via skeletal subspace deformation comprises: performing a centerline computation on a segmented image for deriving a centerline thereof; computing a distance map utilizing said centerline and said segmented image to derive said distance map; generating a polyhedral model of the lumen of said colon; and utilizing said polyhedral model, said distance map, and said centerline for performing a straightening operation on said centerline.
摘要:
A system and method for colon unfolding via skeletal subspace deformation comprises: performing a centerline computation on a segmented image for deriving a centerline thereof; computing a distance map utilizing said centerline and said segmented image to derive said distance map; generating a polyhedral model of the lumen of said colon; and utilizing said polyhedral model, said distance map, and said centerline for performing a straightening operation on said centerline.
摘要:
A method for registration of virtual endoscopy images in first and second patient positions comprises performing colon segmentation and feature extraction, including centerline and colon surface data for each of the images; resampling the centerline and colon surface data; computing respective local descriptors; pairing point correspondences on the centerlines between the first and second images by minimal cost matching; extrapolating the centerline point correspondences to a 3-dimensional/3-dimensional (3D/3D) transformation between the first and second images. The method also includes selecting a position for a virtual endoscope in one of the images; associating an orthogonal reference frame with the virtual endoscope; and applying the 3D/3D transformation to the orthogonal reference frame so as to derive a corresponding transformed reference frame for the virtual endoscope in the other of the images.