摘要:
A method and apparatus for treating a mating portion of a fiber optic connector for reducing an insertion force for the mating portion includes providing a mating portion of a fiber optic connector and treating the mating portion of the fiber optic connector by applying a cleaning and/or lubricating solution thereto to reduce the insertion force of the mating portion.
摘要:
A method and apparatus for treating a mating portion of a fiber optic connector for reducing an insertion force for the mating portion includes providing a mating portion of a fiber optic connector and treating the mating portion of the fiber optic connector by applying a cleaning and/or lubricating solution thereto to reduce the insertion force of the mating portion.
摘要:
A method and apparatus for treating a mating portion of a fiber optic connector for reducing an insertion force for the mating portion includes providing a mating portion of a fiber optic connector and treating the mating portion of the fiber optic connector by applying a cleaning and/or lubricating solution thereto to reduce the insertion force of the mating portion.
摘要:
A loopback device utilizing bend insensitive optical fiber to facilitate deployment of a connectorized fiber optic distribution cable through small-diameter conduit. A loopback device utilizing bend insensitive optical fiber for use within an optical network to route optical signals transmitted downstream along one or more optical fibers back upstream along the same or other optical fibers for the purpose of the determining the integrity of the downstream and upstream optical paths from a single upstream location. A loopback device including one or more bend insensitive optical fibers, a multi-fiber loopback ferrule and a dust cap for sealing engaging a connector plug attached to a distribution cable or a tether of a pre-engineered distribution cable assembly prior to installation of the distribution cable.
摘要:
A loopback device utilizing bend insensitive optical fiber to facilitate deployment of a connectorized fiber optic distribution cable through small-diameter conduit. A loopback device utilizing bend insensitive optical fiber for use within an optical network to route optical signals transmitted downstream along one or more optical fibers back upstream along the same or other optical fibers for the purpose of the determining the integrity of the downstream and upstream optical paths from a single upstream location. A loopback device including one or more bend insensitive optical fibers, a multi-fiber loopback ferrule and a dust cap for sealing engaging a connector plug attached to a distribution cable or a tether of a pre-engineered distribution cable assembly prior to installation of the distribution cable.
摘要:
A loopback device utilizing bend insensitive optical fiber to facilitate deployment of a connectorized fiber optic distribution cable through small-diameter conduit. A loopback device utilizing bend insensitive optical fiber for use within an optical network to route optical signals transmitted downstream along one or more optical fibers back upstream along the same or other optical fibers for the purpose of the determining the integrity of the downstream and upstream optical paths from a single upstream location. A loopback device including one or more bend insensitive optical fibers, a multi-fiber loopback ferrule and a dust cap for sealing engaging a connector plug attached to a distribution cable or a tether of a pre-engineered distribution cable assembly prior to installation of the distribution cable.
摘要:
Patch panel assemblies (150) that contain patch panel modules (50) for use in optical fiber telecommunication systems are disclosed. One of the patch panel assemblies includes a front mounting frame (210F) and at least one internal mounting frame (210I) that support a plurality of patch panel modules. The patch panel assembly also includes a hinge assembly (224) configured allow bend-insensitive fiber cables (70) to be routed therethrough. One of the patch panel assemblies includes a housing (152) with a drawer (270) that supports a plurality of patch panel modules. The patch panel modules employ bend-insensitive optical fibers (12C) to connect front and rear ports (92, 98) so that the patch panels have a reduced size as compared to conventional patch panel modules. The patch panel assemblies include a cable distribution box (300) that can store excess cable and that assists in routing bend-insensitive fiber optic cables within the patch panel assembly interior (200) in order to connect to select patch panel module jacks (90).
摘要:
A fiber optic cable assembly with a floating tap is disclosed, wherein the assembly comprises a fiber optic cable having a cable fiber assembly, such as in the form of a ribbon stack. The assembly includes at least one network access point (NAP) for accessing at least one cable fiber in the cable fiber assembly and at least one strength area for example a strength member. At least one cable fiber is extracted from the cable fiber assembly and held by a transition assembly. A buffer conduit loosely contains the at least one cable fiber and guides it to an intermediate buffer conduit, which in turn guides the at least one cable fiber to a splice tube. The intermediate buffer conduit can translate relative to the splice tube. At least one tether fiber is spliced to the at least one cable fiber. Alternatively, the at least one cable fiber has sufficient length to serve as the at least one tether fiber so that splicing to another fiber is not required. Each strength member is covered by a movable member. A bonding structure bonds the cable fiber assembly, buffer conduit and movable member so that the cable fiber assembly can translate but not rotate relative to the cable within the NAP. This allows the tap point to “float” within the NAP when the cable fiber assembly needs to translate within the cable.
摘要:
A fiber optic cable assembly with a floating tap is disclosed, wherein the assembly comprises a fiber optic cable having a cable fiber assembly, such as in the form of a ribbon stack. The assembly includes at least one network access point (NAP) for accessing at least one cable fiber in the cable fiber assembly and at least one strength area for example a strength member. At least one cable fiber is extracted from the cable fiber assembly and held by a transition assembly. A buffer conduit loosely contains the at least one cable fiber and guides it to an intermediate buffer conduit, which in turn guides the at least one cable fiber to a splice tube. The intermediate buffer conduit can translate relative to the splice tube. At least one tether fiber is spliced to the at least one cable fiber. Alternatively, the at least one cable fiber has sufficient length to serve as the at least one tether fiber so that splicing to another fiber is not required. Each strength member is covered by a movable member. A bonding structure bonds the cable fiber assembly, buffer conduit and movable member so that the cable fiber assembly can translate but not rotate relative to the cable within the NAP. This allows the tap point to “float” within the NAP when the cable fiber assembly needs to translate within the cable.
摘要:
Disclosed are multifiber ferrule assemblies and methods for manufacturing the same. In one embodiment, a finished multifiber ferrule can be provided with a front end having a first front surface that extends beyond a second front surface, thereby inhibiting interaction with a laser beam during processing. A plurality of optical fibers can be fixed within respective optical fiber bores and extend from respective optical fiber bore openings to a position beyond the first front surface. The plurality of optical fibers can be processed by cutting and polishing with a laser beam for providing each optical fiber with a final polished end surface located beyond the first front surface. In further embodiments, an offset structure is positioned with respect to a finished multifiber ferrule after cutting and polishing the optical fibers.