Abstract:
Various systems and methods for bypassing one or more non-capable nodes. For example, one method involves a capable node determining that an adjacent node is non-capable, where capable nodes are configured to implement a data plane capability and non-capable nodes are not. The method then involves identifying a downstream node that is capable. The downstream node is on a shortest path. The method also involves generating information that identifies a tunnel to the downstream node.
Abstract:
Aspects of the embodiments are directed to synchronizing at least a portion of a link-state database. A network element can lose an adjacency. The network element can transmit a request to a neighboring network element for synchronization of a link-state database. The request can include a version number of a last synchronized link-state database from the neighboring network element. The neighboring network element can determine whether the version of the link-state database is greater than or less than a copy of the link-state database stored by the neighboring network element. If the requested version number is less than the neighboring network element's link-state database version number, then the neighboring network element can send changes to the link-state database since the requested link-state database version number.
Abstract:
In one embodiment, a first router determines whether a network coupling the first router to one or more second routers is transit-only, wherein transit-only indicates connecting only routers to provide for transmission of data from router to router. When the network is transit-only, the first router generates an Open Shortest Path First (OSPF) Link State Advertisement (LSA) that includes an address for the network and a designated network mask. The designated network mast operates as a transit-only identification that indicates the address should not be installed in a Routing Information Base (RIB) upon receipt of the OSPF LSA at the one or more second routers. When the network is not transit-only, the first router generates an OSPF LSA that includes the address for the network but does not include the designated network mask, to permit installation of the address in a RIB upon receipt of the OSPF LSA at the one or more second routers.
Abstract:
Aspects of the embodiments are directed to synchronizing at least a portion of a link-state database. A network element can lose an adjacency. The network element can transmit a request to a neighboring network element for synchronization of a link-state database. The request can include a version number of a last synchronized link-state database from the neighboring network element. The neighboring network element can determine whether the version of the link-state database is greater than or less than a copy of the link-state database stored by the neighboring network element. If the requested version number is less than the neighboring network element's link-state database version number, then the neighboring network element can send changes to the link-state database since the requested link-state database version number.
Abstract:
The present disclosure is directed to a centralized control policy for multicast replicator selection. Methods include receiving multicast advertisements from a plurality of edge devices configured with multicast protocol, each multicast advertisement including information indicating whether an associated edge device is a replicator; analyzing multicast advertisements from the plurality of edge devices to identify one or more replicators; receiving a centralized policy configuration associated with at least one control policy that includes a preference related to selection of at least one replicator from the identified one or more replicators, the preference applicable to a defined set of edge devices from the plurality of edge devices; and updating at least one multicast advertisement with the control policy for transmission to the defined set of edge devices, the updated at least one multicast advertisement indicating the preference for replicator selection for the defined set of edge devices based on the control policy.
Abstract:
The present disclosure is directed to a centralized control policy for multicast replicator selection. Methods include receiving multicast advertisements from a plurality of edge devices configured with multicast protocol, each multicast advertisement including information indicating whether an associated edge device is a replicator; analyzing multicast advertisements from the plurality of edge devices to identify one or more replicators; receiving a centralized policy configuration associated with at least one control policy that includes a preference related to selection of at least one replicator from the identified one or more replicators, the preference applicable to a defined set of edge devices from the plurality of edge devices; and updating at least one multicast advertisement with the control policy for transmission to the defined set of edge devices, the updated at least one multicast advertisement indicating the preference for replicator selection for the defined set of edge devices based on the control policy.
Abstract:
Various systems and methods for bypassing one or more non-capable nodes. For example, one method involves a capable node determining that an adjacent node is non-capable, where capable nodes are configured to implement a data plane capability and non-capable nodes are not. The method then involves identifying a downstream node that is capable. The downstream node is on a shortest path. The method also involves generating information that identifies a tunnel to the downstream node.
Abstract:
According to certain embodiments, a method by a router in a software-defined wide-area network (SDWAN) includes determining one or more replicators in the SDWAN and generating a multicast distribution tree that includes the determined one or more replicators. The method further includes receiving multicast traffic from a source and creating a (S,G) route for the received multicast traffic. The method further includes replicating the multicast traffic using the multicast distribution tree.
Abstract:
The present disclosure is directed to a centralized control policy for multicast replicator selection. Methods include receiving multicast advertisements from a plurality of edge devices configured with multicast protocol, each multicast advertisement including information indicating whether an associated edge device is a replicator; analyzing multicast advertisements from the plurality of edge devices to identify one or more replicators; receiving a centralized policy configuration associated with at least one control policy that includes a preference related to selection of at least one replicator from the identified one or more replicators, the preference applicable to a defined set of edge devices from the plurality of edge devices; and updating at least one multicast advertisement with the control policy for transmission to the defined set of edge devices, the updated at least one multicast advertisement indicating the preference for replicator selection for the defined set of edge devices based on the control policy.
Abstract:
Various systems and methods for bypassing one or more non-capable nodes. For example, one method involves a capable node determining that an adjacent node is non-capable, where capable nodes are configured to implement a data plane capability and non-capable nodes are not. The method then involves identifying a downstream node that is capable. The downstream node is on a shortest path. The method also involves generating information that identifies a tunnel to the downstream node.