Abstract:
Push to talk (PTT) devices that communicate packet-based voice communications are disclosed. An example PTT device receives voice packets via a packet-based communication network from another PTT device. Voice information in the received voice packets are used to reconstruct the voice communication. The receiving PTT device is able to identify an occurrence of at least one delayed, corrupted or lost voice packet, and then communicate a packet re-transmit request to the other PTT device requesting a replacement voice packet that has a portion of the voice communication that is identical to the voice communication portion of the delayed, corrupted or lost voice packet. The voice communication may then be repaired based on the received replacement voice packet. While the voice communication is being repaired, a comfort tone may be generated so that the listener of the PTT device understands that the voice communication is being repaired.
Abstract:
A facility for congestion management and latency prediction is described. In various embodiments, the facility sums a series of fractional transmission delays wherein each fractional transmission delay is measured as a probability of a failed transmission attempt multiplied by the cost of the failed transmission attempt, and provides the sum.
Abstract:
A facility for congestion management and latency prediction is described. In various embodiments, the facility sums a series of fractional transmission delays wherein each fractional transmission delay is measured as a probability of a failed transmission attempt multiplied by the cost of the failed transmission attempt, and provides the sum.
Abstract:
Push to talk (PTT) devices that communicate packet-based voice communications are disclosed. An example PTT device receives voice packets via a packet-based communication network from another PTT device. Voice information in the received voice packets are used to reconstruct the voice communication. The receiving PTT device is able to identify an occurrence of at least one delayed, corrupted or lost voice packet, and then communicate a packet re-transmit request to the other PTT device requesting a replacement voice packet that has a portion of the voice communication that is identical to the voice communication portion of the delayed, corrupted or lost voice packet. The voice communication may then be repaired based on the received replacement voice packet. While the voice communication is being repaired, a comfort tone may be generated so that the listener of the PTT device understands that the voice communication is being repaired.
Abstract:
Push to talk (PTT) devices that communicate packet-based voice communications are disclosed. An example PTT device receives voice packets via a packet-based communication network from another PTT device. Voice information in the received voice packets are used to reconstruct the voice communication. The receiving PTT device is able to identify an occurrence of at least one delayed, corrupted or lost voice packet, and then communicate a packet re-transmit request to the other PTT device requesting a replacement voice packet that has a portion of the voice communication that is identical to the voice communication portion of the delayed, corrupted or lost voice packet. The voice communication may then be repaired based on the received replacement voice packet. While the voice communication is being repaired, a comfort tone may be generated so that the listener of the PTT device understands that the voice communication is being repaired.
Abstract:
A facility for congestion management and latency prediction is described. In various embodiments, the facility sums a series of fractional transmission delays wherein each fractional transmission delay is measured as a probability of a failed transmission attempt multiplied by the cost of the failed transmission attempt, and provides the sum.
Abstract:
A facility for congestion management and latency prediction is described. In various embodiments, the facility sums a series of fractional transmission delays wherein each fractional transmission delay is measured as a probability of a failed transmission attempt multiplied by the cost of the failed transmission attempt, and provides the sum.
Abstract:
Push to talk (PTT) devices that communicate packet-based voice communications are disclosed. An example PTT device receives voice packets via a packet-based communication network from another PTT device. Voice information in the received voice packets are used to reconstruct the voice communication. The receiving PTT device is able to identify an occurrence of at least one delayed, corrupted or lost voice packet, and then communicate a packet re-transmit request to the other PTT device requesting a replacement voice packet that has a portion of the voice communication that is identical to the voice communication portion of the delayed, corrupted or lost voice packet. The voice communication may then be repaired based on the received replacement voice packet. While the voice communication is being repaired, a comfort tone may be generated so that the listener of the PTT device understands that the voice communication is being repaired.
Abstract:
A facility for congestion management and latency prediction is described. In various embodiments, the facility sums a series of fractional transmission delays wherein each fractional transmission delay is measured as a probability of a failed transmission attempt multiplied by the cost of the failed transmission attempt, and provides the sum.