Abstract:
Techniques for distributing content to mobile computing devices, such as in the context of a vehicle-based wireless network, are described. In some examples, a collection of vehicle-mounted devices forms a cooperative wireless network to distribute content items throughout the network. The devices in the network automatically and independently vary the transmission rates in order to optimize or at least improve throughput, network connectivity, and/or range. Each device may determine a utilization level of a wireless communication channel. If the utilization level is below a threshold level, the device increases the transmission data rate of its transceiver, thereby decreasing range. If the utilization level is above a threshold level, the device decreases the transmission data rate of its transceiver, thereby increasing range.
Abstract:
Techniques for distributing content to mobile computing devices, such as in the context of a vehicle-based wireless network, are described. In some examples, a collection of vehicle-mounted devices forms a cooperative wireless network to distribute content items throughout the network. The devices in the network automatically and independently vary the transmission rates in order to optimize or at least improve throughput, network connectivity, and/or range. Each device may determine a utilization level of a wireless communication channel. If the utilization level is below a threshold level, the device increases the transmission data rate of its transceiver, thereby decreasing range. If the utilization level is above a threshold level, the device decreases the transmission data rate of its transceiver, thereby increasing range.
Abstract:
Push to talk (PTT) devices that communicate packet-based voice communications are disclosed. An example PTT device receives voice packets via a packet-based communication network from another PTT device. Voice information in the received voice packets are used to reconstruct the voice communication. The receiving PTT device is able to identify an occurrence of at least one delayed, corrupted or lost voice packet, and then communicate a packet re-transmit request to the other PTT device requesting a replacement voice packet that has a portion of the voice communication that is identical to the voice communication portion of the delayed, corrupted or lost voice packet. The voice communication may then be repaired based on the received replacement voice packet. While the voice communication is being repaired, a comfort tone may be generated so that the listener of the PTT device understands that the voice communication is being repaired.
Abstract:
Techniques for distributing content to mobile computing devices, such as in the context of a vehicle-based wireless network, are described. In some examples, a collection of vehicle-mounted devices forms a cooperative wireless network to distribute content items throughout the network. The devices in the network automatically and independently vary the transmission rates in order to optimize or at least improve throughput, network connectivity, and/or range. Each device may determine a utilization level of a wireless communication channel. If the utilization level is below a threshold level, the device increases the transmission data rate of its transceiver, thereby decreasing range. If the utilization level is above a threshold level, the device decreases the transmission data rate of its transceiver, thereby increasing range.
Abstract:
Techniques for distributing content to mobile computing devices, such as in the context of a vehicle-based wireless network, are described. In some examples, a content provider uses a cellular network to initially transmit a content item to a multi-network communication device in a first vehicle. The first vehicle device then uses a local Wi-Fi network to further transmit randomly selected portions of the content item to devices on nearby vehicles, which may also further propagate the content item portions to other vehicles. Vehicle devices may also specifically request content portions by broadcasting requests to neighboring vehicle devices via local Wi-Fi communication and/or communicating with the content provider via the cellular network. Upon the occurrence of a condition, such as a passage of time, the content provider may also initiate communication with devices in the network in order to assure complete distribution of the content item.
Abstract:
Techniques for distributing content to mobile computing devices, such as in the context of a vehicle-based wireless network, are described. In some examples, a content provider uses a cellular network to initially transmit a content item to a multi-network communication device in a first vehicle. The first vehicle device then uses a local Wi-Fi network to further transmit randomly selected portions of the content item to devices on nearby vehicles, which may also further propagate the content item portions to other vehicles. Vehicle devices may also specifically request content portions by broadcasting requests to neighboring vehicle devices via local Wi-Fi communication and/or communicating with the content provider via the cellular network. Upon the occurrence of a condition, such as a passage of time, the content provider may also initiate communication with devices in the network in order to assure complete distribution of the content item.
Abstract:
Techniques for managing congestion in a computer network are described. In some examples a network node uses a dynamic moving average to determine a level of network congestion a computer network. The dynamic moving average uses a window that is dynamically resized based on the contents of the window. For example, when the contents of the half of the window containing older samples are sufficiently different from the contents of the half of the window containing newer samples, the older samples are discarded and an average is calculated using just the newer samples.
Abstract:
Push to talk (PTT) devices that communicate packet-based voice communications are disclosed. An example PTT device receives voice packets via a packet-based communication network from another PTT device. Voice information in the received voice packets are used to reconstruct the voice communication. The receiving PTT device is able to identify an occurrence of at least one delayed, corrupted or lost voice packet, and then communicate a packet re-transmit request to the other PTT device requesting a replacement voice packet that has a portion of the voice communication that is identical to the voice communication portion of the delayed, corrupted or lost voice packet. The voice communication may then be repaired based on the received replacement voice packet. While the voice communication is being repaired, a comfort tone may be generated so that the listener of the PTT device understands that the voice communication is being repaired.
Abstract:
Techniques for sharing network information, such as routing table information, are described. In some examples, network nodes share information about the topology of their network. For example, nodes may share routing tables with their neighbors from time to time. To improve the performance of the network, by reducing the overhead of transmitting routing tables, the nodes share their routing tables with neighbor nodes only when those tables are updated or upon request. In other circumstances, such as when a routing table has not changed since it was last shared, each network node instead transmits an indicator, such as a routing table checksum, hash, or the like, that can be used by a neighbor node to determine the routing table is unchanged.
Abstract:
Techniques for managing congestion in a computer network are described. In some examples a network node uses a dynamic moving average to determine a level of network congestion a computer network. The dynamic moving average uses a window that is dynamically resized based on the contents of the window. For example, when the contents of the half of the window containing older samples are sufficiently different from the contents of the half of the window containing newer samples, the older samples are discarded and an average is calculated using just the newer samples.