摘要:
Systems, methods, and sampling probes for chemically testing a liquid sample are provided. In accordance with one embodiment of the present disclosure, a system generally includes a sample container for containing a liquid, wherein the liquid includes a chemical compound of interest and a reducing agent, and a non-corrosive sampling probe comprising a first channel for delivering a flow of gas to the liquid sample, and a second channel for purging sample fluid from the sample container, wherein at least a portion of the sampling probe is in contact with the liquid.
摘要:
An automated system for processing a liquid test sample is provided. The disclosed automated system comprises a gas and liquid separator; an attachment for a first gas source that provides a flow of gas for transferring the test sample from a sealable sample container to the gas and liquid separator and for removing at least one volatile component from the test sample in the gas and liquid separator, wherein a chemical compound of interest present in the test sample is converted to at least one volatile species prior to transfer of the test sample into the gas and liquid separator, a trapping vessel in fluid communication with the gas and liquid separator, wherein the trapping vessel contains at least one material capable of separating the at least one volatile species of the chemical compound from the at least one volatile component and retaining the at least one volatile species, and a heat source for rapidly heating the at least one material in the trapping vessel to a temperature sufficient to release the at least one volatile species from the at least one material.
摘要:
An automated system for processing a liquid test sample is provided. The disclosed automated system comprises a gas and liquid separator; an attachment for a first gas source that provides a flow of gas for transferring the test sample from a sealable sample container to the gas and liquid separator and for removing at least one volatile component from the test sample in the gas and liquid separator, wherein a chemical compound of interest present in the test sample is converted to at least one volatile species prior to transfer of the test sample into the gas and liquid separator, a trapping vessel in fluid communication with the gas and liquid separator, wherein the trapping vessel contains at least one material capable of separating the at least one volatile species of the chemical compound from the at least one volatile component and retaining the at least one volatile species, and a heat source for rapidly heating the at least one material in the trapping vessel to a temperature sufficient to release the at least one volatile species from the at least one material.
摘要:
Automated systems and methods for processing liquid test samples are generally provided. Automated systems generally include a gas and liquid separator configured for removing at least one volatile component from the test sample, a first trapping vessel in fluid communication with the gas and liquid separator, wherein the first trapping vessel contains a trapping material capable of adsorbing at least one of the at least one volatile component to provide at least one adsorbed component, and a heat source configured to heat the trapping material to a temperature sufficient to release at least one of the at least one adsorbed component from the trapping material to provide at least one released component.
摘要:
Automated systems and methods for processing liquid test samples are generally provided. Automated systems generally include a gas and liquid separator configured for removing at least one volatile component from the test sample, a first trapping vessel in fluid communication with the gas and liquid separator, wherein the first trapping vessel contains a trapping material capable of adsorbing at least one of the at least one volatile component to provide at least one adsorbed component, and a heat source configured to heat the trapping material to a temperature sufficient to release at least one of the at least one adsorbed component from the trapping material to provide at least one released component.
摘要:
A spectrophotometer system includes an optics block housing an excitation lamp and a cell for receiving a gas to be detected. The excitation lamp excites atoms of the gas to be detected to produce photons. The spectrophotometer system also includes a photo-multiplier tube assembly and an analog-to-digital converter. The photo-multiplier tube assembly detects the photons, and produces an analog output accordingly. The analog-to-digital converter converts this analog output to a digital output. The photo-multiplier tube assembly and the analog-to-digital converter of a spectrophotometer system are calibrated together so that a zero input to the analog-to-digital converter may be defined as an absence of photons. The optics block is configured to minimize scattering of light, without a lens, so that the output of the spectrophotometer system is a function of the number of atoms of the gas to be detected and not of scattered light.