Abstract:
A method of evaluating free-space optical propagation characteristics includes emitting a plurality of laser beams from a corresponding plurality of laser sources, receiving laser beams at different target points, and measuring the time-based spatial fluctuations between the laser beams thus received. The respective distances from the laser sources to each target point are used to normalize the time-based spatial fluctuations. The difference between the normalized spatial positions of the laser beams at the target points is derived and used to obtain the frequency spectrum of time-based fluctuations of the spatial positions.
Abstract:
A modulated optical signal processing method and apparatus optically convert an optical signal to an intermediate frequency band that simplifies electrical processing after optical detection, thereby increasing the optical reception sensitivity. Either single-mode light is modulated with a first radio wave overlaid with data, or a modulated optical signal is directly generated, and the optical carrier and optical sideband contained in that modulated optical signal are transmitted, the transmitted optical carrier and optical sideband are input and the input optical carrier and optical sideband are mixed with a radio wave of a predetermined frequency and a combination of an adjacent optical carrier and optical sideband that are closer together than the frequency of the first radiofrequency electrical signal is optically selected from among a frequency-converted or frequency-unconverted optical carrier and optical sideband thus obtained and an electrical signal is detected from this selected optical signal.