Abstract:
Modified compositions for carbonaceous concrete conductive sheathing materials for ground electrodes are described, for use in protecting installations from electrical currents. By the incorporation of discrete fibers, superior freeze-thaw resistance is imparted. The water resistance of carbonaceous concretes according to the invention is improved by the addition of a soluble soap of long chain fatty acids. A method of precasting carbonaceous cements according to the invention allows uniform and consistent development of properties for use either in shallow trench or deep well applications.
Abstract:
Two related approaches are provided to controlling the relative permeability of ground water and gases developed in deep well anodic installations. The central metallic anode is encased and protected by a semi-permeable conductive cementaceous sheath, using as the sheathing material any of a number of compositions having the desired properties of permeability and conductivity. Alternatively, a conductive but impermeable anode is used in conjunction with a semi-permeable backfill material in a bore hole of a deep well anode installation, thereby achieving the same desired ends of controlling the relative permeability of water and gases in the installation.
Abstract:
Improved deep well grounding systems of the kind used for cathodic protection of ground installations according to the invention employ a combination of materials for the casing of the central metallic anode and the backfill in the well which exhibit a degree of permeability sufficient to allow by-product gases develop in ordinary use of this system to escape, avoiding unwanted cavitation, while minimizing the migration of ground water and the attendant undesirable environmental pollution.
Abstract:
A method is described for the modification of asphaltic compositions such that cellulosic fibers are not degraded by the asphalt at elevated temperatures. This is achieved by the addition of addition of certain inorganic or organic alkaline materials to the composition. As a further embodiment of the invention, a method is also described for the dispersion of cellulosic fibers in liquid asphalt in such a way as to obtain a thermally stable product with defined viscoelastic properties. This comprises blending the fibers with asphalt, fibers and alkaline additives under controlled mixing conditions such that the required viscometric specification is attained.
Abstract:
Improved deep well grounding systems of the kind used for cathodic protection of ground installations according to the invention employ a combination of materials for the casing of the central metallic anode and the backfill in the well which exhibit a degree of permeability sufficient to allow by-product gases develop in ordinary use of this system to escape, avoiding unwanted cavitation, while minimizing the migration of ground water and the attendant undesirable environmental pollution.
Abstract:
Protective coatings, in particular for the purpose of shielding and waterproofing buildings and engineered outdoor structures are based on mixtures of polymer modified tall oil, in particular mixtures of an aqueous emulsion of tall oil with an aqueous polymeric latex. Waterproofing/coating compositions according to the invention may be made as a two-component sprayable system comprising a first part which is a mixture of a tall oil emulsion and a polymeric latex and a second part which is an aqueous solution of an effective curing agent.