Method for secondary exploration of old oil area in fault subsidence basin

    公开(公告)号:US10365387B1

    公开(公告)日:2019-07-30

    申请号:US16242331

    申请日:2019-01-08

    摘要: The present invention discloses a method for overall exploration of a mature exploration area of oil-rich sags, the method including the following steps: building an area-wide seismic sequence framework for a study area based on uniform 3D seismic data of the study area; determining the spatial distribution characteristics of sedimentary reservoirs in the study area by sequence based on the area-wide seismic sequence framework; grading source rocks in the study area by sequence based on the area-wide seismic sequence framework; counting the spatial distribution characteristics of caprocks in the study area; determining a transporting system for the study area based on the unified 3D seismic data of the study area; classifying potential trap areas in the study area based on the spatial distribution characteristics of the sedimentary reservoirs and the spatial distribution characteristics of the caprocks; and deploying the overall exploration of the study area based on the classification of the potential trap areas, grading of the source rocks and the transporting system of the study area.

    METHOD FOR SECONDARY EXPLORATION OF OLD OIL AREA IN FAULT SUBSIDENCE BASIN

    公开(公告)号:US20190212460A1

    公开(公告)日:2019-07-11

    申请号:US16242331

    申请日:2019-01-08

    IPC分类号: G01V1/30

    摘要: The present invention discloses a method for overall exploration of a mature exploration area of oil-rich sags, the method including the following steps: building an area-wide seismic sequence framework for a study area based on uniform 3D seismic data of the study area; determining the spatial distribution characteristics of sedimentary reservoirs in the study area by sequence based on the area-wide seismic sequence framework; grading source rocks in the study area by sequence based on the area-wide seismic sequence framework: counting the spatial distribution characteristics of caprocks in the study area; determining a transporting system for the study area based on the unified 3D seismic data of the study area; classifying potential trap areas in the study area based on the spatial distribution characteristics of the sedimentary reservoirs and the spatial distribution characteristics of the caprocks; and deploying the overall exploration of the study area based on the classification of the potential trap areas, grading of the source rocks and the transporting system of the study area.