Superhydrophobic hemispherical array which can realize droplet pancake bouncing phenomenon

    公开(公告)号:US11767455B2

    公开(公告)日:2023-09-26

    申请号:US17042462

    申请日:2019-05-07

    CPC classification number: C09K3/18

    Abstract: A superhydrophobic hemispherical array which can realize droplet pancake bouncing phenomenon is provided. The superhydrophobic hemispherical array shows an arc-shape structure which is narrow at the top and wide at the bottom, where a is the angle that substrate-gas interface goes across the gas and reaches substrate-hemisphere interface, d refers to the diameter of the contact area between hemispherical structure and substrate, s represents the space between two adjoining hemispheres, h denotes the vertical height from the top of hemisphere to substrate surface, and 70°≤a≤90°, 900 μm≤d ≤1700 μm, s≤550 μm, 600 μm≤h≤1100 μm, respectively. The superhydrophobic hemispherical array has a water contact angle larger than 150° and roll-off angle lower than 10°.

    Thermal extrusion method to fabricate large-dimension superhydrophobic cylinder pillar arrays with droplet pancake bouncing phenomenon

    公开(公告)号:US11104043B2

    公开(公告)日:2021-08-31

    申请号:US16337364

    申请日:2017-08-28

    Abstract: A thermal extrusion method to fabricate large-dimension superhydrophobic cylinder pillar arrays with droplet pancake bouncing phenomenon. Preparing thermal extrusion mold: the through-hole arrays with 0.8˜1.25 mm diameter, 0.25 mm interval space and 0.6˜1.0 mm height are first obtained on metals, and are then polished, rinsed and dried. Thermal extrusion: polymer materials are first thermally extruded on the obtained mold and cooled to room temperature. Demold: excess polymer materials flowing from the through hole are cut off and then the polymer cylinder pillar arrays are lifted off from the mold. Superhydrophobic treatment: the whole polymer sample is treated using mixed liquid spray consisting of titanium oxide nanoparticles dispersed in fluoroalkylsilane ethanol solution, and the superhydrophobic cylinder pillar arrays are obtained. The method is easy to operate, low-cost, recyclable, effective for different polymer materials, and can obtain cylinder pillar arrays with large dimensions, which can realize efficient large-area and industrial fabrication of the droplet pancake bouncing surfaces.

Patent Agency Ranking