-
公开(公告)号:US20210383228A1
公开(公告)日:2021-12-09
申请号:US17338974
申请日:2021-06-04
Applicant: DeepMind Technologies Limited
Inventor: Petar Velickovic , Charles Blundell , Oriol Vinyals , Razvan Pascanu , Lars Buesing , Matthew Overlan
IPC: G06N3/08 , G06N3/04 , G06F16/23 , G06F16/901
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating prediction outputs characterizing a set of entities. In one aspect, a method comprises: obtaining data defining a graph, comprising: (i) a set of nodes, wherein each node represents a respective entity from the set of entities, (ii) a current set of edges, wherein each edge connects a pair of nodes, and (iii) a respective current embedding of each node; at each of a plurality of time steps: updating the respective current embedding of each node, comprising processing data defining the graph using a graph neural network; and updating the current set of edges based at least in part on the updated embeddings of the nodes; and at one or more of the plurality of time steps: generating a prediction output characterizing the set of entities based on the current embeddings of the nodes.
-
公开(公告)号:US20210089834A1
公开(公告)日:2021-03-25
申请号:US17114324
申请日:2020-12-07
Applicant: DeepMind Technologies Limited
Inventor: Daniel Pieter Wierstra , Yujia Li , Razvan Pascanu , Peter William Battaglia , Theophane Guillaume Weber , Lars Buesing , David Paul Reichert , Oriol Vinyals , Nicolas Manfred Otto Heess , Sebastien Henri Andre Racaniere
Abstract: A neural network system is proposed to select actions to be performed by an agent interacting with an environment to perform a task in an attempt to achieve a specified result. The system may include a controller to receive state data and context data, and to output action data. The system may also include an imagination module to receive the state and action data, and to output consequent state data. The system may also include a manager to receive the state data and the context data, and to output route data which defines whether the system is to execute an action or to imagine. The system may also include a memory to store the context data.
-
公开(公告)号:US10887607B2
公开(公告)日:2021-01-05
申请号:US16686718
申请日:2019-11-18
Applicant: DeepMind Technologies Limited
Inventor: Nicholas Watters , Razvan Pascanu , Peter William Battaglia , Daniel Zorn , Theophane Guillaume Weber
IPC: H04N19/174 , H04N19/105 , H04N19/139 , H04N19/46 , H04N19/52 , H04N19/577 , H04N19/61
Abstract: A system implemented by one or more computers comprises a visual encoder component configured to receive as input data representing a sequence of image frames, in particular representing objects in a scene of the sequence, and to output a sequence of corresponding state codes, each state code comprising vectors, one for each of the objects. Each vector represents a respective position and velocity of its corresponding object. The system also comprises a dynamic predictor component configured to take as input a sequence of state codes, for example from the visual encoder, and predict a state code for a next unobserved frame. The system further comprises a state decoder component configured to convert the predicted state code, to a state, the state comprising a respective position and velocity vector for each object in the scene. This state may represent a predicted position and velocity vector for each of the objects.
-
公开(公告)号:US20200092565A1
公开(公告)日:2020-03-19
申请号:US16686718
申请日:2019-11-18
Applicant: DeepMind Technologies Limited
Inventor: Nicholas Watters , Razvan Pascanu , Peter William Battaglia , Daniel Zorn , Theophane Guillaume Weber
IPC: H04N19/174 , H04N19/61 , H04N19/52 , H04N19/105 , H04N19/46 , H04N19/139 , H04N19/577
Abstract: A system implemented by one or more computers comprises a visual encoder component configured to receive as input data representing a sequence of image frames, in particular representing objects in a scene of the sequence, and to output a sequence of corresponding state codes, each state code comprising vectors, one for each of the objects. Each vector represents a respective position and velocity of its corresponding object. The system also comprises a dynamic predictor component configured to take as input a sequence of state codes, for example from the visual encoder, and predict a state code for a next unobserved frame. The system further comprises a state decoder component configured to convert the predicted state code, to a state, the state comprising a respective position and velocity vector for each object in the scene. This state may represent a predicted position and velocity vector for each of the objects.
-
5.
公开(公告)号:US12242947B2
公开(公告)日:2025-03-04
申请号:US16759561
申请日:2018-10-29
Applicant: DeepMind Technologies Limited
Inventor: Pablo Sprechmann , Siddhant Jayakumar , Jack William Rae , Alexander Pritzel , Adrià Puigdomènech Badia , Oriol Vinyals , Razvan Pascanu , Charles Blundell
Abstract: There is described herein a computer-implemented method of processing an input data item. The method comprises processing the input data item using a parametric model to generate output data, wherein the parametric model comprises a first sub-model and a second sub-model. The processing comprises processing, by the first sub-model, the input data to generate a query data item, retrieving, from a memory storing data point-value pairs, at least one data point-value pair based upon the query data item and modifying weights of the second sub-model based upon the retrieved at least one data point-value pair. The output data is then generated based upon the modified second sub-model.
-
6.
公开(公告)号:US20240394540A1
公开(公告)日:2024-11-28
申请号:US18674367
申请日:2024-05-24
Applicant: DEEPMIND TECHNOLOGIES LIMITED
Inventor: Jonathan Schwarz , Razvan Pascanu , Raia Thais Hadsell , Wojciech Czarnecki , Yee Whye Teh , Jelena Luketina
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for scalable continual learning using neural networks. One of the methods includes receiving new training data for a new machine learning task; training an active subnetwork on the new training data to determine trained values of the active network parameters from initial values of the active network parameters while holding current values of the knowledge parameters fixed; and training a knowledge subnetwork on the new training data to determine updated values of the knowledge parameters from the current values of the knowledge parameters by training the knowledge subnetwork to generate knowledge outputs for the new training inputs that match active outputs generated by the trained active subnetwork for the new training inputs.
-
公开(公告)号:US12033055B2
公开(公告)日:2024-07-09
申请号:US17763984
申请日:2020-09-07
Applicant: DeepMind Technologies Limited
Inventor: Emilio Parisotto , Hasuk Song , Jack William Rae , Siddhant Madhu Jayakumar , Maxwell Elliot Jaderberg , Razvan Pascanu , Caglar Gulcehre
Abstract: A system including an attention neural network that is configured to receive an input sequence and to process the input sequence to generate an output is described. The attention neural network includes: an attention block configured to receive a query input, a key input, and a value input that are derived from an attention block input. The attention block includes an attention neural network layer configured to: receive an attention layer input derived from the query input, the key input, and the value input, and apply an attention mechanism to the query input, the key input, and the value input to generate an attention layer output for the attention neural network layer; and a gating neural network layer configured to apply a gating mechanism to the attention block input and the attention layer output of the attention neural network layer to generate a gated attention output.
-
公开(公告)号:US11983634B2
公开(公告)日:2024-05-14
申请号:US17486842
申请日:2021-09-27
Applicant: DeepMind Technologies Limited
Inventor: Razvan Pascanu , Raia Thais Hadsell , Victor Constant Bapst , Wojciech Czarnecki , James Kirkpatrick , Yee Whye Teh , Nicolas Manfred Otto Heess
Abstract: A method is proposed for training a multitask computer system, such as a multitask neural network system. The system comprises a set of trainable workers and a shared module. The trainable workers and shared module are trained on a plurality of different tasks, such that each worker learns to perform a corresponding one of the tasks according to a respective task policy, and said shared policy network learns a multitask policy which represents common behavior for the tasks. The coordinated training is performed by optimizing an objective function comprising, for each task: a reward term indicative of an expected reward earned by a worker in performing the corresponding task according to the task policy; and at least one entropy term which regularizes the distribution of the task policy towards the distribution of the multitask policy.
-
公开(公告)号:US20210201116A1
公开(公告)日:2021-07-01
申请号:US17201542
申请日:2021-03-15
Applicant: DeepMind Technologies Limited
Inventor: Neil Charles Rabinowitz , Guillaume Desjardins , Andrei-Alexandru Rusu , Koray Kavukcuoglu , Raia Thais Hadsell , Razvan Pascanu , James Kirkpatrick , Hubert Josef Soyer
Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
-
公开(公告)号:US10572776B2
公开(公告)日:2020-02-25
申请号:US16403343
申请日:2019-05-03
Applicant: DeepMind Technologies Limited
Inventor: Fabio Viola , Piotr Wojciech Mirowski , Andrea Banino , Razvan Pascanu , Hubert Josef Soyer , Andrew James Ballard , Sudarshan Kumaran , Raia Thais Hadsell , Laurent Sifre , Rostislav Goroshin , Koray Kavukcuoglu , Misha Man Ray Denil
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
-
-
-
-
-
-
-
-
-