Abstract:
An improved magnetorheological fluid damper is provided which effectively provides a smooth transition, without a sharp break in the damper force/velocity curve, between very low damping forces near zero damper velocity to higher damping forces at higher piston velocities while maintaining desirable maximum force levels. The damper includes a piston assembly, including a magnet assembly and a flow gap extending through the piston assembly to permit fluid flow between the chambers. The force/velocity optimization feature includes at least one groove open to the flow gap, formed in a non-magnetic portion of the piston and positioned in series with a part of the flow gap in a magnetic circuit generated by the magnet assembly and dimensioned/sized to permit fluid flowing the passage to experience a magnetorheological effect less than a magnetorheological effect experienced by fluid flowing through the flow gap but not through the groove.
Abstract:
The invention provides a magnetorheological piston and damper assembly. The piston includes a piston body including at least one bypass port and an annular gap formed therein. The bypass port is in fluid communication with the annular gap. The bypass port includes a longitudinal portion extending substantially parallel to a piston longitudinal axis, and a bend portion extending substantially away from the longitudinal axis. The annular gap is spaced apart from the longitudinal portion and extends substantially parallel to the piston longitudinal axis. During operation, fluid flows through the bypass port and annular gap. The damper assembly includes a rod and a housing including the fluid carried therein. The piston is slidably carried in the housing and operably attached to the rod.
Abstract:
A hydraulic vehicle damper is provided for limiting the extent and/or speed of extension of the damper on the rebound stroke with a variety of working fluids including magneto-rheological (MR) fluids, through the use of buoyant sleeve in the working chamber of the damper, rather than having rebound limiting elements attached to the damper piston or damper cylinder tube as in prior vehicle dampers.
Abstract:
A magneto-rheological damping device comprises a core element for carrying a magnetic flux and a magnetic flux generator positioned adjacent to a portion of the core element and operable to generate a magnetic flux in the core element. A sleeve is positioned over the core element and magnetic flux generator and includes a plurality of protrusions extending generally radially outwardly from a center of the core element. A flux ring surrounds the core element and sleeve and defining a passage between flux ring and core element for the flow of a magneto-rheological fluid. The sleeve protrusions are configured to engage the flux ring and secure the flux ring in a concentric position around the core element and sleeve.
Abstract:
A piston assembly for use with an MR fluid damper. The piston assembly has a piston core and a flux ring positioned in a desired alignment with the piston core so that the flux ring forms an annular flow gap the piston core. The flux ring is secured to the piston core in the desired alignment by a plurality of projections extending across the flow gap between an inner surface of the flux ring and an outer surface of the piston core. The projections are molded through flux ring holes intersecting the inner and outer surfaces of the flux ring. A method for making the piston assembly is also described and claimed.
Abstract:
A magneto-rheological (nullMRnull) damper having a damper body tube containing an MR fluid. A piston assembly is disposed in the damper body tube and forms an annular flow gap between the piston assembly and the damper body tube. The piston assembly has a piston core containing ferrous material and an electromagnetic coil mounted on the piston core for generating a magnetic field. The damper further includes a ferromagnetic member positioned outside of the damper body tube substantially adjacent the piston assembly for providing at least a part of a magnetic flux return path for the magnetic field.
Abstract:
A suspension damper including a tube and a damping piston assembly disposed within the tube and slidably mounted therein for reciprocal movement in the tube. The suspension damper also includes a piston rod extending through the tube and connected to the damping piston assembly, a rod guide assembly closing a bottom end of the tube, and a rebound cut-off disk and spring suspended in the tube between the rod guide assembly and the damping piston assembly and cooperating with the damping piston assembly to provide a rebound cut-off effect between the rebound cut-off disk and the damping piston assembly. The rebound cut-off disk and spring have specific gravities that are greater than the specific gravity of the fluid in the tube, such that the disk and the spring sink in the fluid.
Abstract:
A piston rod for use in a magnetorheological dampening device having a surface finish that renders the device resistant to wear at the elastomeric seal/piston rod interface. The piston rod has a surface finish of Ra
Abstract:
A vehicle suspension damper assembly is provided which includes a cup member with a threaded opening formed therein. A piston rod includes a threaded portion, which is engaged in the threaded opening. An electrical connector including a terminal portion is received in an opening formed in the piston rod. The threaded engagement between the piston rod and the cup member is a predetermined length that reduces deflection of the cup member to reduce transfer of load to the terminal portion of the electrical connector.