Abstract:
A magneto-rheological (nullMRnull) damper having a gas cup that slidably moves within a damper body tube and isolates an MR fluid from a gas in one end of the damper body tube. The gas cup has a dynamic seal that comprises an MR fluid compatible O-ring located in a narrow O-ring groove disposed in an outer surface of the gas cup. The narrow O-ring groove is sized to reduce entrapment of abrasive magnetic particles in the MR fluid between the O-ring and an inner surface of the damper body tube. The O-ring groove has a free roll room of about less than 12%.
Abstract:
A piston rod for use in a magnetorheological dampening device having a surface finish that renders the device resistant to wear at the elastomeric seal/piston rod interface. The piston rod has a surface finish of Ra
Abstract:
A damper body for a magnetorheological (MR) damper and associated methods of forming the damper body. The damper body is formed of a base material, such as a steel, and is coated with an abrasion-resistant layer comprising chromium. The layer of chromium provides a sliding wear surface for sliding contact with a reciprocating piston. To avoid high-stress abrasive wear over the expected service life of the magnetorheological damper, the layer of chromium has a minimum thickness greater than or equal to a minimum thickness of about 8 nullm. In other embodiments, be fore applying the abrasion-resistant layer of chromium, the damper body is coated with a layer of a hard coating material having a hardness greater than the hardness of the base material. The effective hardness of the damper body is a composite of the respective hardnesses of the base material comprising the damper body and the layer of hard coating material. The thickness of abrasion-resistant layer of chromium is chosen in direct relation to the effective hardness.
Abstract:
A magneto-rheological (MR) damper provides a higher than minimum level of damping when a power source to the MR damper is not supplying a control current. The present invention damper includes magnets positioned to direct a magnetic flux across a MR fluid path. The fluid path is created when a rod and piston assembly stroke the fluid though a control valve assembly attached to a damper chamber causing a resistance to MR fluid flow. An electric coil cancels an affect of the permanent magnets when the control current is available to allow a control circuit more operating range. The permanent magnets allow for damping when no control current is available.
Abstract:
A vibration damper assembly to dampen the vibration generated in a motor vehicle and transmitted through, for example, a steering assembly. The vibration damper assembly includes a rotor disposed within a housing. The rotor is operatively connected to a velocity generating member such as a pinion that is integrated with the steering assembly. A conductive sleeve is disposed between the housing and the rotor. A coil engages the sleeve and is capable of generating a magnetic field that is transmitted through the sleeve. A plate separates the rotor from the sleeve thereby defining a viscous fluid chamber and a Magneto-Rheological (MR) fluid chamber between the rotor and the sleeve. The viscous fluid chamber includes a Newtonian fluid and the MR fluid chamber includes a MR fluid having sheer properties reactive to the magnetic field.
Abstract:
The piston for a magneto-rheological fluid system is manufactured from a piston skirt of a material having a high magnetic permeability and a piston plate which closes one end of the piston skirt having a low magnetic permeability and therefore must be made out of a material such as stainless steel. The piston is manufactured by placing the plate on one electrode and clamping another set of electrodes against the outer circumferential surface of the piston ring or skirt. The plate and ring are brought into contact with one another while applying a current through the piston ring and the piston plate, thereby heating interfering portions of the ring and plate and permitting the plate to be forced inside of the ring while at the same time allowing the softened or plastic portions of the ring and plate to intermingle with one another and thus form a solid state bond.
Abstract:
A vibration damper assembly to dampen the vibration generated in a motor vehicle and transmitted through, for example, a steering assembly. The vibration damper assembly includes a rotor disposed within a housing. The rotor is operatively connected to a velocity generating member such as a pinion that is integrated with the steering assembly. A conductive sleeve is disposed between the housing and the rotor. A coil engages the sleeve and is capable of generating a magnetic field that is transmitted through the sleeve. A plate separates the rotor from the sleeve thereby defining a viscous fluid chamber and a Magneto-Rheological (MR) fluid chamber between the rotor and the sleeve. The viscous fluid chamber includes a Newtonian fluid and the MR fluid chamber includes a MR fluid having sheer properties reactive to the magnetic field.