Abstract:
A temperature compensation method for controlling a damping force of a magnetorheological (MR) damper is disclosed. First, a base operating current as a function of a desired force level of a damping force of the MR damper is determined, and a temperature compensation as a function of an operating temperature of the MR damper is determined. Finally, the temperature compensation is applied to the base operating current to generate a compensated operating current as a function of the desired force level of the damping force and the operating temperature of the MR damper. To refine the compensated operating current, the temperature compensation can be determined as both a function of the operating temperature of the MR damper and a relative velocity of the MR damper.
Abstract:
The invention provides a method of controlling at least one magnetorheological damper. The invention also provides a computer usable medium including a program and a suspension control system for achieving the same. The method includes calculating a power input coefficient based on at least one power input characteristic. A power dissipation coefficient is calculated based on at least one power dissipation characteristic. A damper temperature is estimated based on the calculated power input coefficient and the calculated power dissipation coefficient. At least one dampening force characteristic is modulated based on the estimated damper temperature.