Abstract:
A power converter and a method for balancing voltages across input capacitors are disclosed in the present application. The power converter includes: two DC input terminals; a first input capacitor and a second input capacitor; a first bridge arm and a second bridge arm connected in series with one another; and an output circuit configured to generate a signal required by the power converter based on the signals at a midpoint of the first bridge arm and a midpoint of the second bridge arm. The power converter further includes: a first voltage balancing unit and a second balancing unit configured to reduce a voltage difference between the first input capacitor and the second input capacitor. The power converter provided by the present application solves the problem of imbalance in the voltages across the first input voltage and the second input voltage.
Abstract:
A power converter and a method for balancing voltages across input capacitors are disclosed in the present application. The power converter includes: two DC input terminals; a first input capacitor and a second input capacitor; a first bridge arm and a second bridge arm connected in series with one another; and an output circuit configured to generate a signal required by the power converter based on the signals at a midpoint of the first bridge arm and a midpoint of the second bridge arm. The power converter further includes: a first voltage balancing unit and a second balancing unit configured to reduce a voltage difference between the first input capacitor and the second input capacitor. The power converter provided by the present application solves the problem of imbalance in the voltages across the first input voltage and the second input voltage.