摘要:
During a drilling operation, measured data from the drilling operation may be received with a panistic inversion and risk estimate module. The panistic inversion and risk estimate module may generate a plurality of mathematical solutions from a panistic inversion that uses the measured data and one or more earth models. The one or more earth models having various parameters may be selected prior to drilling and/or while the drilling operation occurs. For each solution of the plurality of mathematical solutions generated from the panistic inversion, the panistic inversion and risk estimate module may determine if the measured data exceeds one or more probability risk thresholds associated with the drilling operation. If the measured data exceeds the probability risk threshold associated with the drilling operation, then the panistic inversion and risk estimate module may generate an alert.
摘要:
During a drilling operation, measured data from the drilling operation may be received with a panistic inversion and risk estimate module. The panistic inversion and risk estimate module may generate a plurality of mathematical solutions from a panistic inversion that uses the measured data and one or more earth models. The one or more earth models having various parameters may be selected prior to drilling and/or while the drilling operation occurs. For each solution of the plurality of mathematical solutions generated from the panistic inversion, the panistic inversion and risk estimate module may determine if the measured data exceeds one or more probability risk thresholds associated with the drilling operation. If the measured data exceeds the probability risk threshold associated with the drilling operation, then the panistic inversion and risk estimate module may generate an alert.
摘要:
A method and system for producing look-ahead profiles measurements includes positioning an energy transmitter, such as a transmitting antenna, proximate to a borehole assembly tool. One or more energy receivers, such as receiving antennas, are positioned along a length of the borehole assembly. Next, energy is transmitted to produce look-ahead scans relative to the borehole assembly tool. Look-ahead graph data with an x-axis being a function of a time relative to the position of the borehole assembly tool is generated. The look-ahead graph is produced and displayed on a display device. The look-ahead graph may track estimated formation values based on earth models. The estimated formation values are displayed below a tool position history line that is part of the look-ahead graph. The estimated formation values in the look-ahead graph may be based on inversions of resistivity data from the look-ahead scans.
摘要:
A method and system for producing look-ahead profiles measurements includes positioning an energy transmitter, such as a transmitting antenna, proximate to a borehole assembly tool. One or more energy receivers, such as receiving antennas, are positioned along a length of the borehole assembly. Next, energy is transmitted to produce look-ahead scans relative to the borehole assembly tool. Look-ahead graph data with an x-axis being a function of a time relative to the position of the borehole assembly tool is generated. The look-ahead graph is produced and displayed on a display device. The look-ahead graph may track estimated formation values based on earth models. The estimated formation values are displayed below a tool position history line that is part of the look-ahead graph. The estimated formation values in the look-ahead graph may be based on inversions of resistivity data from the look-ahead scans.
摘要:
An interactive display of results obtained from the inversion of logging data is produced by obtaining and inverting the logging data using a Monte-Carlo inversion. An interactive plot having a percentile scale plotted against a location parameter is produced and a particular percentile is selected using the interactive plot. A cross-section plot for the particular percentile using the results of the Monte-Carlo inversion is produced. The particular percentile can be a curve representing a best-fit solution or a polyline representing selected solutions. Background color/shading can be displayed on the interactive plot to indicate user-defined constraints have been applied. Uncertain features can be plotted on a corresponding cross-section display using fading. Clusters of solutions that are substantially equally likely, given the measurements at a particular drill location, can be identified and plotted. A cross-section constructed from the layered models belonging to a particular cluster can be overlaid on another cross-section.
摘要:
An interactive display of results obtained from the inversion of logging data is produced by obtaining and inverting the logging data using a Monte-Carlo inversion. An interactive plot having a percentile scale plotted against a location parameter is produced and a particular percentile is selected using the interactive plot. A cross-section plot for the particular percentile using the results of the Monte-Carlo inversion is produced. The particular percentile can be a curve representing a best-fit solution or a polyline representing selected solutions. Background color/shading can be displayed on the interactive plot to indicate user-defined constraints have been applied. Uncertain features can be plotted on a corresponding cross-section display using fading. Clusters of solutions that are substantially equally likely, given the measurements at a particular drill location, can be identified and plotted. A cross-section constructed from the layered models belonging to a particular cluster can be overlaid on another cross-section.
摘要:
An orientation vector, referred to hereinafter as the “geosteering vector,” is directed to the more conductive formation area within the DOI of the tool and away from the more resistive formation areas. Accordingly, drilling in a direction opposite the geosteering vector leads to more resistive formation. Also, the disclosed geosteering vectors obtained from the real and imaginary components will not align with each other for non-planar formations and therefore the misalignment of the geosteering obtained from real and imaginary components is indicative of a non-planar formation. A superposition method is disclosed which can be used to calculate electromagnetic (EM) couplings in a non-planar geometry formation (as well as in a planar geometry formation) in real time, without requiring two or three dimensional modeling calculations.
摘要:
A wireline tool string used in a wellbore to determine formation properties is disclosed which comprises one or more transmitter tools disposed within the tool string, each transmitter tool having three linearly independent coils; a receiver tool disposed within the tool string, wherein the receiver tool has three linearly independent coils; and a tool string component disposed between the one or mole transmitter tools and the receiver tool; wherein the one or more transmitter tools are selectably spatially separated from the receiver tool along the tool string to provide a desired depth of investigation and measurements made using the one or more transmitter tools and receiver tool are used to determine formation properties.
摘要:
A modular downhole apparatus to determine a formation property, the apparatus being incorporated into a drill string comprising one or more downhole tools and drill pipe, the drill pipe being of the same or various lengths, the modular downhole apparatus comprising a first module having one or more antennas, wherein the first module has connectors on both ends adapted to connect with the drill string; and a second module having one or more antennas, wherein the second module has connectors on both ends adapted to connect with the drill string; wherein the first module and the second module are spaced apart on the drill string; and wherein one or more of the one or more antennas of one or both of the modules has a dipole moment that is tilted or transverse.
摘要:
An orientation vector, referred to hereinafter as the “geosteering vector,” is directed to the more conductive formation area within the DOI of the tool and away from the more resistive formation areas. Accordingly, drilling in a direction opposite the geosteering vector leads to more resistive formation. Also, the disclosed geosteering vectors obtained from the real and imaginary components will not align with each other for non-planar formations and therefore the misalignment of the geosteering obtained from real and imaginary components is indicative of a non-planar formation. A superposition method is disclosed which can be used to calculate electromagnetic (EM) couplings in a non-planar geometry formation (as well as in a planar geometry formation) in real time, without requiring two or three dimensional modeling calculations.