Abstract:
A pulse wave measuring device checks whether amplitude of a pulse signal satisfies a gain changing condition and, when the gain changing condition is satisfied, changes a gain. The pulse wave measuring device includes an amplitude storing unit and a mode progressing unit. The amplitude storing unit stores plural gain changing conditions, to which a series of order are assigned, respectively. A mode progressing unit 15 changes the gain changing condition to the next-ordered gain changing condition upon determination that the mode progress condition is satisfied. The gain changing condition is satisfied in case that Y1 or more number of pieces of X1 amplitudes are larger than an upper limit value U1 or smaller than a lower limit value L1. X1 is increased as the order of the set gain changing condition is higher.
Abstract:
A respiratory function testing apparatus capable of testing a respiratory function of a subject more accurately. In the apparatus, a respiratory state detection unit acquires a first signal representative of different inspiratory volumes corresponding to a plurality of breaths of the subject and a second signal representative of intrapleural pressures corresponding to the respective different inspiratory volumes, and detects a plurality of respiratory states corresponding to the different inspiratory volumes and their corresponding intrapleural pressures. A respiratory state determination unit captures a state of the respiratory function of the subject on the basis of the plurality of respiratory states corresponding to the different inspiratory volumes and their corresponding-respective intrapleural pressures.
Abstract:
An operation of a change valve is changeable between a valve closing state, in which the change valve is closed to close connection between a pump passage and a canister passage and to open connection between an atmosphere passage and the canister passage, and a valve opening state, in which the change valve is opened to open the connection between the pump passage and the canister passage and to close the connection between the atmosphere passage and the canister passage. An ECU determines that the change valve is abnormal when a value, which is obtained by subtracting a second reference pressure measured in an (n-1)th execution of a fuel vapor leakage sensing process from a first reference pressure measured in an nth execution of the fuel vapor leakage sensing process, is equal to or larger than a predetermined threshold value.
Abstract:
A first purge passage is connected to an intake-air passage at a downstream side of a throttle valve. A second purge passage is connected to the intake-air passage at an upstream side of a supercharging device. A first and a second check valve are respectively provided in the first and second purge passages. A control unit determines to which operating condition (from a first to a third operating condition) engine operation corresponds, based on downstream-side and upstream-side pressure of the throttle valve. A change of in-tank pressure of a fuel tank is detected in a condition that an air-communication valve is closed but a purge control valve is opened. The control unit diagnoses which of the valves is not normally operated and whether such valve is fixed to a valve opened or a valve closed position, based on the change of in-tank pressure for each of engine operating conditions.