Abstract:
An ignition system includes a dividing wall which divides a combustion chamber of an engine into a main chamber and a pre-chamber and has formed therein at least one spray hole which communicates between the main chamber and the pre-chamber, and a spark plug in which voltage is applied across a spark gap between a first electrode and a second electrode to create an electrical spark to ignite fuel. The pre-chamber has the first electrode. The dividing wall or a member which electrically conducts with the dividing wall has the second electrode. The ignition system executes an after-top-dead-center ignition control mode to ignite fuel after a compression stroke top dead center. In the after-top-dead-center ignition control mode, an ignition source which is in the form of a self-growable flame kernel is provided in a spray hole-nearby region, the spray hole, or the main chamber within a crank angle of 20° after an ignition timing at which the voltage starts to be applied across the spark gap. The spray hole-nearby region is a region which is located 3 mm or less away from a spray hole center in the pre-chamber.
Abstract:
An ignition system has an ignition plug and an ignition control unit that controls the ignition plug. When an engine is in a predetermined operating state, the ignition control unit performs ignition control after top dead center to perform ignition after the compression top dead center. The ignition system has an airflow support structure that facilitates the flow of airflow through a discharge gap at least after the compression top dead center. The ignition system is configured such that due to the airflow support structure and the timing of the ignition, airflow at a flow rate of 5 m/s or more flows through the discharge gap during a spark period after top dead center, which is the generation period of the discharge spark in the ignition control after top dead center.
Abstract:
An abnormality diagnosis device introduces a pressure into a reference-pressure detecting portion by utilizing a pressure introducing portion to detect a reference pressure correlative to a reference orifice, detects a purge-valve closed pressure that is a pressure in an evaporation system of when a pressure is introduced into the evaporation system by the pressure introducing portion after the purge valve is controlled to be closed, and detects a purge-valve open pressure that is a pressure in the evaporation system of when a pressure is introduced into the evaporation system by the pressure introducing portion after the purge valve is controlled to be open. The abnormality diagnosis device determines whether a leakage abnormality of the evaporation system and a fixed open abnormality are generated, based on a magnitude relation between the reference pressure, the purge-valve closed pressure, and the purge-valve open pressure.
Abstract:
A wireless communication apparatus mounted on a mobile body includes a transmitter and a receiver. The transmitter is configured to transmit position information indicating a position to which the mobile body is scheduled to move, to a server apparatus. The receiver is configured to receive communication quality information indicating a communication quality corresponding to the position, from the server apparatus. The transmitter is configured to transmit the date at a communication position specified based on the communication quality information.
Abstract:
A SIM router device is configured to access a SIM that stores a first authentication application and a second authentication application. The SIM router device includes a first input interface, a second input interface, a mapping information storage unit, and a controller. The mapping information storage unit is configured to acquire an authentication application list that lists the first authentication application and the second authentication application from the SIM, and store a mapping information in which the first input interface is associated with the first authentication application and the second input interface is associated with the second authentication application. The controller is configured to route, based on the mapping information, a first instruction received by the first input interface to the first authentication application of the SIM, and a second instruction received by the second input interface to the second authentication application of the SIM.