Abstract:
Exemplary embodiments provide encoding and decoding methods, and associated encoders and decoders, for encoding and decoding of an audio scene which is represented by one or more audio signals. The encoder generates a bit stream which comprises downmix signals and side information which includes individual matrix elements of a reconstruction matrix which enables reconstruction of the one or more audio signals in the decoder.
Abstract:
Exemplary embodiments provide encoding and decoding methods, and associated encoders and decoders, for encoding and decoding of an audio scene which is represented by one or more audio signals. The encoder generates a bit stream which comprises downmix signals and side information which includes individual matrix elements of a reconstruction matrix which enables reconstruction of the one or more audio signals in the decoder.
Abstract:
An encoding system encodes an N-channel audio signal (X), wherein N≥3, as a single-channel downmix signal (Y) together with dry and wet upmix parameters ({tilde over (C)},{tilde over (P)}). In a decoding system, a decorrelating section outputs, based on the downmix signal, an (N−1)-channel decorrelated signal (Z); a dry upmix section maps the downmix signal linearly in accordance with dry upmix coefficients (C) determined based on the dry upmix parameters; a wet upmix section populates an intermediate matrix based on the wet upmix parameters and knowing that the intermediate matrix belongs to a predefined matrix class, obtains wet upmix coefficients (P) by multiplying the intermediate matrix by a predefined matrix, and maps the decorrelated signal linearly in accordance with the wet upmix coefficients; and a combining section combines outputs from the upmix sections to obtain a reconstructed signal ({circumflex over (X)}) corresponding to the signal to be reconstructed.
Abstract:
Audio objects are associated with positional metadata. A received downmix signal comprises downmix channels that are linear combinations of one or more audio objects and are associated with respective positional locators.In a first aspect, the downmix signal, the positional metadata and frequency-dependent object gains are received. An audio object is reconstructed by applying the object gain to an upmix of the downmix signal in accordance with coefficients based on the positional metadata and the positional locators.In a second aspect, audio objects have been encoded together with at least one bed channel positioned at a positional locator of a corresponding downmix channel. The decoding system receives the downmix signal and the positional metadata of the audio objects. A bed channel is reconstructed by suppressing the content representing audio objects from the corresponding downmix channel on the basis of the positional locator of the corresponding downmix channel.
Abstract:
There is provided encoding and decoding methods for encoding and decoding of object based audio. An exemplary encoding method includes inter alia calculating M downmix signals by forming combinations of N audio objects, wherein M≤N, and calculating parameters which allow reconstruction of a set of audio objects formed on basis of the N audio objects from the M downmix signals. The calculation of the M downmix signals is made according to a criterion which is independent of any loudspeaker configuration.
Abstract:
Exemplary embodiments provide encoding and decoding methods, and associated encoders and decoders, for encoding and decoding of an audio scene which is represented by one or more audio signals. The encoder generates a bit stream which comprises downmix signals and side information which includes individual matrix elements of a reconstruction matrix which enables reconstruction of the one or more audio signals in the decoder.
Abstract:
Exemplary embodiments provide encoding and decoding methods, and associated encoders and decoders, for encoding and decoding of an audio scene which at least comprises one or more audio objects (106a). The encoder (108, 110) generates a bit stream (116) which comprises downmix signals (112) and side information which includes individual matrix elements (114) of a reconstruction matrix which enables reconstruction of the one or more audio objects (106a) in the decoder (120).
Abstract:
An encoding system encodes multiple audio signals (X) as a downmix signal (Y) together with wet and dry upmix coefficients (P, C). In a decoding system, a pre-multiplier (101) computes an intermediate signal (W) by mapping the downmix signal linearly in accordance with a first set of coefficients (Q); a decorrelating section (102) outputs a decorrelated signal (Z) based on the intermediate signal; a wet upmix section (103) computes a wet upmix signal by mapping the decorrelated signal linearly in accordance with the wet upmix coefficients; a dry upmix section (104) computes a dry upmix signal by mapping the downmix signal linearly in accordance with the dry upmix coefficients; a combining section (105) provides a multidimensional reconstructed signal (X) by combining the wet and dry upmix signals; and a converter (106) computes the first set of coefficients based on the wet and dry upmix coefficients and supplies this to the pre-multiplier.
Abstract:
Exemplary embodiments provide encoding and decoding methods, and associated encoders and decoders, for encoding and decoding of an audio scene which is represented by one or more audio signals. The encoder generates a bit stream which comprises downmix signals and side information which includes individual matrix elements of a reconstruction matrix which enables reconstruction of the one or more audio signals in the decoder.
Abstract:
Exemplary embodiments provide encoding and decoding methods, and associated encoders and decoders, for encoding and decoding of an audio scene which is represented by one or more audio signals. The encoder generates a bit stream which comprises downmix signals and side information which includes individual matrix elements of a reconstruction matrix which enables reconstruction of the one or more audio signals in the decoder.