摘要:
Embodiments are directed to a method of representing spatial rendering metadata for processing in an object-based audio system that allows for lossless interpolation and/or re-sampling of the metadata. The method comprises time stamping the metadata to create metadata instances, and encoding an interpolation duration to with each metadata instance that specifies the time to reach a desired rendering state for the respective metadata instance. The re-sampling of metadata is useful for re-clocking metadata to an audio coder and for the editing audio content.
摘要:
Multiple virtual source locations may be defined for a volume within which audio objects can move. A set-up process for rendering audio data may involve receiving reproduction speaker location data and pre-computing gain values for each of the virtual sources according to the reproduction speaker location data and each virtual source location. The gain values may be stored and used during “run time,” during which audio reproduction data are rendered for the speakers of the reproduction environment. During run time, for each audio object, contributions from virtual source locations within an area or volume defined by the audio object position data and the audio object size data may be computed. A set of gain values for each output channel of the reproduction environment may be computed based, at least in part, on the computed contributions. Each output channel may correspond to at least one reproduction speaker of the reproduction environment.
摘要:
Multiple virtual source locations may be defined for a volume within which audio objects can move. A set-up process for rendering audio data may involve receiving reproduction speaker location data and pre-computing gain values for each of the virtual sources according to the reproduction speaker location data and each virtual source location. The gain values may be stored and used during “run time,” during which audio reproduction data are rendered for the speakers of the reproduction environment. During run time, for each audio object, contributions from virtual source locations within an area or volume defined by the audio object position data and the audio object size data may be computed. A set of gain values for each output channel of the reproduction environment may be computed based, at least in part, on the computed contributions. Each output channel may correspond to at least one reproduction speaker of the reproduction environment.
摘要:
Multiple virtual source locations may be defined for a volume within which audio objects can move. A set-up process for rendering audio data may involve receiving reproduction speaker location data and pre-computing gain values for each of the virtual sources according to the reproduction speaker location data and each virtual source location. The gain values may be stored and used during “run time,” during which audio reproduction data are rendered for the speakers of the reproduction environment. During run time, for each audio object, contributions from virtual source locations within an area or volume defined by the audio object position data and the audio object size data may be computed. A set of gain values for each output channel of the reproduction environment may be computed based, at least in part, on the computed contributions. Each output channel may correspond to at least one reproduction speaker of the reproduction environment.
摘要:
The positions of a plurality of speakers at a media consumption site are determined. Audio information in an object-based format is received. Gain adjustment value for a sound content portion in the object-based format may be determined based on the position of the sound content portion and the positions of the plurality of speakers. Audio information in a ring-based channel format is received. Gain adjustment value for each ring-based channel in a set of ring-based channels may be determined based on the ring to which the ring-based channel belongs and the positions of the speakers at a media consumption site.
摘要:
Diffuse or spatially large audio objects may be identified for special processing. A decorrelation process may be performed on audio signals corresponding to the large audio objects to produce decorrelated large audio object audio signals. These decorrelated large audio object audio signals may be associated with object locations, which may be stationary or time-varying locations. For example, the decorrelated large audio object audio signals may be rendered to virtual or actual speaker locations. The output of such a rendering process may be input to a scene simplification process. The decorrelation, associating and/or scene simplification processes may be performed prior to a process of encoding the audio data.
摘要:
Multiple virtual source locations may be defined for a volume within which audio objects can move. A set-up process for rendering audio data may involve receiving reproduction speaker location data and pre-computing gain values for each of the virtual sources according to the reproduction speaker location data and each virtual source location. The gain values may be stored and used during “run time,” during which audio reproduction data are rendered for the speakers of the reproduction environment. During run time, for each audio object, contributions from virtual source locations within an area or volume defined by the audio object position data and the audio object size data may be computed. A set of gain values for each output channel of the reproduction environment may be computed based, at least in part, on the computed contributions. Each output channel may correspond to at least one reproduction speaker of the reproduction environment.
摘要:
The positions of a plurality of speakers at a media consumption site are determined. Audio information in an object-based format is received. Gain adjustment value for a sound content portion in the object-based format may be determined based on the position of the sound content portion and the positions of the plurality of speakers. Audio information in a ring-based channel format is received. Gain adjustment value for each ring-based channel in a set of ring-based channels may be determined based on the ring to which the ring-based channel belongs and the positions of the speakers at a media consumption site.
摘要:
Multiple virtual source locations may be defined for a volume within which audio objects can move. A set-up process for rendering audio data may involve receiving reproduction speaker location data and pre-computing gain values for each of the virtual sources according to the reproduction speaker location data and each virtual source location. The gain values may be stored and used during “run time,” during which audio reproduction data are rendered for the speakers of the reproduction environment. During run time, for each audio object, contributions from virtual source locations within an area or volume defined by the audio object position data and the audio object size data may be computed. A set of gain values for each output channel of the reproduction environment may be computed based, at least in part, on the computed contributions. Each output channel may correspond to at least one reproduction speaker of the reproduction environment.
摘要:
The positions of a plurality of speakers at a media consumption site are determined. Audio information in an object-based format is received. Gain adjustment value for a sound content portion in the object-based format may be determined based on the position of the sound content portion and the positions of the plurality of speakers. Audio information in a ring-based channel format is received. Gain adjustment value for each ring-based channel in a set of ring-based channels may be determined based on the ring to which the ring-based channel belongs and the positions of the speakers at a media consumption site.