Abstract:
Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
Abstract:
Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
Abstract:
Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
Abstract:
The present invention is directed to a composition containing a block copolymer, a metal ion and a specific oligomer which increases ion conductivity without decreasing mechanical strength of the composition. The composition is useful for a solid polymer electrolyte of a secondary battery.
Abstract:
Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
Abstract:
Solid polymer electrolyte and compound used for thereof are disclosed. The compound has a dendritic macromolecule and a cationic metal. The solid polymer electrolyte has increased ion conductivity even if the electrolyte is used at low temperature. Said solid polymer electrolyte is useful for a secondary battery.
Abstract:
Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
Abstract:
The present invention is directed to a composition containing a block copolymer, a metal ion and a cross-linked polymer comprising polyalkoxide. The composition has increased ion conductivity as well as mechanical strength. The composition is useful for a solid polymer electrolyte of a secondary battery.
Abstract:
Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.