Asymmetric polyvinylidine chloride membranes and carbon molecular sieve membranes made therefrom

    公开(公告)号:US11229884B2

    公开(公告)日:2022-01-25

    申请号:US16500649

    申请日:2018-03-14

    Abstract: An asymmetric polyvinylidene chloride copolymer membrane is made by a method using a dope solution comprised of a polyvinylidene chloride copolymer and a solvent that solubilizes the polyvinylidene chloride copolymer that is shaped to form an initial shaped membrane. The initial shaped membrane is then quenched in a liquid comprised of a solvent that is miscible with the solvent that solubilizes the polyvinylidene chloride copolymer but is immiscible with the polyvinylidene chloride copolymer to form a wet asymmetric polyvinylidene chloride copolymer membrane. The solvents are removed from the wet membrane to form the asymmetric polyvinylidene chloride (PVDC) copolymer membrane. The membrane then may be further heated to form a carbon asymmetric membrane in which the porous support structure and separation layer of the PVDC membrane is maintained. The asymmetric carbon membrane may be useful to separate gases such as olefins from their corresponding paraffins, hydrogen from syngas or cracked gas, natural gas or refinery gas, oxygen/nitrogen, or carbon dioxide and methane.

    Vinylidene chloride copolymer-based carbon molecular sieve adsorbent compositions and processes therefor

    公开(公告)号:US10239043B2

    公开(公告)日:2019-03-26

    申请号:US15320334

    申请日:2015-06-22

    Abstract: Novel carbon molecular sieve (CMS) compositions comprising carbonized vinylidene chloride copolymer having micropores with an average micropore size ranging from 3.0 to 5.0. These materials offer capability in separations of gas mixtures including, for example, propane/propylene; nitrogen/methane; and ethane/ethylene. Such may be prepared by a process wherein vinylidene chloride copolymer beads, melt extruded film or fiber are pretreated to form a precursor that is finally carbonized at high temperature. Preselection or knowledge of precursor crystallinity and attained maximum pyrolysis temperature enables preselection or knowledge of a average micropore size, according to the equation ?=6.09+(0.0275×C)−(0.00233×T), wherein ? is the average micropore size in Angstroms, C is the crystallinity percentage and T is the attained maximum pyrolysis temperature in degrees Celsius, provided that crystallinity percentage ranges from 25 to 75 and temperature in degrees Celsius ranges from 800 to 1700. The beads, fibers or film may be ground, post-pyrolysis, and combined with a non-coating binder to form extruded pellets, or alternatively the fibers may be woven, either before or after pre-treatment, to form a woven fiber sheet which is thereafter pyrolyzed to form a woven fiber adsorbent.

    Carbon Molecular Sieve Adsorbents Prepared From Activated Carbon and Useful For Propylene-Propane Separation

    公开(公告)号:US20180280927A1

    公开(公告)日:2018-10-04

    申请号:US15764633

    申请日:2016-09-30

    Abstract: A process to prepare a carbon molecular sieve adsorbent composition comprises steps beginning with an activated carbon having specific effective micropore size. The activated carbon is impregnated with monomers or partially polymerized polymer, allowed to complete polymerization, and then carbonized such that the impregnant shrinks the micropores to another specific effective micropore size. Finally, the impregnated/polymerized/carbonized product is annealed at a temperature ranging from 1000° C. to 1500° C., which ultimately and predictably shrinks the micropores to a size ranging from 4.0 Angstroms to 4.3 Angstroms. The invention surprisingly enables fine tuning of the effective micropore size, as well as desirable selectivity, capacity and adsorption rates, to obtain highly desirable carbon molecular sieving capability particularly suited for use in, for example, fixed beds in pressure swing or temperature swing processes to enable propylene/propane separations.

    METHODS FOR PREPARING MICROCAPILLARY CARBON MOLECULAR SIEVE MEMBRANES

    公开(公告)号:US20230032395A1

    公开(公告)日:2023-02-02

    申请号:US17788594

    申请日:2020-12-16

    Abstract: A process for preparing a microcapillary carbon molecular sieve membrane may include extruding a polyvinylidene chloride polymer to a thickness from 10 μm to 1,000 μm to form an extruded polymeric microcapillary film, wherein the extruded polymeric microcapillary film comprises a first end, a second end, and one or more microcapillaries extending from the first end to the second end; pre-treating the extruded polymeric microcapillary film at a temperature from 100° C. to 200° C. for a time from 1 hour to 48 hours to form a pre-treated polymeric microcapillary film; and pyrolizing the pre-treated polymeric microcapillary film at a temperature from 200° C. to 1,500° C. for a time from 15 minutes to 5 hours to form the microcapillary carbon molecular sieve membrane.

Patent Agency Ranking