摘要:
A method for manufacturing a membrane assembly for a fuel cell. To overcome a problem of chemical degradation at an edge of the membrane, the method comprises the following steps: positioning a first decal layer, which is made of the same material as a first catalyst layer, on a first side of the membrane, positioning a second decal layer, which is made of the same material as a second catalyst layer, on a second side of the membrane, pressing a compression pad, which is positioned on the first decal layer with the first decal layer and the second decal layer fully overlapping the compression pad, and the second decal layer against each other with the first decal layer and the membrane positioned in-between, whereby pressure on the first and the second decal layer is applied only in an area covered by the compression pad.
摘要:
Improved additives can be used to prepare polymer electrolyte for membrane electrode assemblies in polymer electrolyte fuel cells. Use of these improved additives can not only improve durability and performance, but can also provide a marked performance improvement during initial conditioning of the fuel cells. The additives are chemical complexes comprising certain metal and organic ligand components.
摘要:
Simplified methods for preparing a catalyst coated membrane (CCM) for solid polymer electrolyte fuel cells. The CCM has two reinforcing, expanded polymer sheets and the methods involve forming the electrolyte membrane from ionomer solution during assembly of the CCM. Thus, the conventional requirement to obtain, handle, and decal transfer solid polymer sheets in CCM preparation can be omitted. Further, CCM structures with improved mechanical strength can be prepared by orienting the expanded polymer sheets such that the stronger tensile strength direction of one is orthogonal to the other. Such improved CCM structures can be fabricated using the simplified methods.
摘要:
Improved additives can be used to prepare polymer electrolyte for membrane electrode assemblies in polymer electrolyte fuel cells. Use of these improved additives can not only improve durability and performance, but can also provide a marked performance improvement during initial conditioning of the fuel cells. The additives are chemical complexes comprising certain metal and organic ligand components.
摘要:
A method for manufacturing a membrane assembly for a fuel cell. To overcome a problem of chemical degradation at an edge of the membrane, the method comprises the following steps: positioning a first decal layer, which is made of the same material as a first catalyst layer, on a first side of the membrane, positioning a second decal layer, which is made of the same material as a second catalyst layer, on a second side of the membrane, pressing a compression pad, which is positioned on the first decal layer with the first decal layer and the second decal layer fully overlapping the compression pad, and the second decal layer against each other with the first decal layer and the membrane positioned in-between, whereby pressure on the first and the second decal layer is applied only in an area covered by the compression pad.
摘要:
A method for manufacturing a membrane assembly for a fuel cell, which membrane assembly includes a membrane with a catalyst layer and a frame arranged on the same side of the membrane and a gap between the catalyst layer and the frame. To allow an easy and cost-effective way for manufacturing such a membrane assembly, the manufacturing method may include the following steps: positioning a first decal layer, which is made of the same material as the first catalyst layer, on the first side of the membrane in a way that the first decal layer overlaps the frame, positioning a second decal layer, which is made of the same material as the second catalyst layer, on the second side of the membrane, pressing the first decal layer and the second decal layer against each other with the membrane and the frame positioned in-between.
摘要:
Simplified methods for preparing a catalyst coated membrane (CCM) for solid polymer electrolyte fuel cells. The CCM has two reinforcing, expanded polymer sheets and the methods involve forming the electrolyte membrane from ionomer solution during assembly of the CCM. Thus, the conventional requirement to obtain, handle, and decal transfer solid polymer sheets in CCM preparation can be omitted. Further, CCM structures with improved mechanical strength can be prepared by orienting the expanded polymer sheets such that the stronger tensile strength direction of one is orthogonal to the other. Such improved CCM structures can be fabricated using the simplified methods.
摘要:
The invention relates to a method for manufacturing a membrane electrode assembly for a fuel cell, which membrane electrode assembly comprises a membrane (2) with a catalyst layer (3) and a frame (6) arranged on the same side of the membrane (2) and a gap (5) between the catalyst layer (3) and the frame (6). To allow an easy and cost-effective way for manufacturing such a membrane assembly, the manufacturing method comprises the following steps: *- Positioning a first decal layer (10, 13), which is made of the same material as the first catalyst layer (3), on the first side of the membrane (2) in a way that the first decal layer (10, 13) overlaps the frame (6), *- positioning a second decal layer (10, 14), which is made of the same material as the second catalyst layer (4), on the second side of the membrane (2), *- pressing the first decal layer (10, 13) and the second decal layer (10, 14) against each other with the membrane (2) and the frame (6) positioned in-between.
摘要:
A method for manufacturing a membrane assembly for a fuel cell, which membrane assembly includes a membrane with a catalyst layer and a frame arranged on the same side of the membrane and a gap between the catalyst layer and the frame. To allow an easy and cost-effective way for manufacturing such a membrane assembly, the manufacturing method may include the following steps: positioning a first decal layer, which is made of the same material as the first catalyst layer, on the first side of the membrane in a way that the first decal layer overlaps the frame, positioning a second decal layer, which is made of the same material as the second catalyst layer, on the second side of the membrane, pressing the first decal layer and the second decal layer against each other with the membrane and the frame positioned in-between.