摘要:
A measurement control section comprises a time measuring section for controlling an operation of measuring a travel time of an ultrasonic wave. The measurement control section operations, based on a high rate clock signal supplied from a ceramic oscillation circuit during the time measuring operation. A clock control section stops the high rate clock signal supplied from the ceramic oscillation circuit every time when the time measuring section completes its time measuring operation, and uses a low rate clock signal supplied from a quartz oscillation circuit to count a standby time between the end of measuring the travel time and the start of carrying out the next measuring operation.
摘要:
To find the propagation time of an ultrasonic wave, a difference occurs between the waveforms received upstream and downstream in a portion where the reception amplitude is comparatively large and it is prevented from being detected as an error of the propagation time. A reception signal is amplified in a reception unit 35 and reception point storage units 38 store the most recent reception point data in a plurality of storage sections in order until the signal level becomes a predetermined value (Vref). An average value of the two zero crossing points before and after the signal level becomes Vref can be adopted as a reception point, the propagation time with a small error of up and down offset, etc., is measured, and it is made possible to realize power saving operation by shortening the measurement time.
摘要:
To find the propagation time of an ultrasonic wave, a difference occurs between the waveforms received upstream and downstream in a portion where the reception amplitude is comparatively large and it is prevented from being detected as an error of the propagation time. A reception signal is amplified in a reception unit 35 and reception point storage units 38 store the most recent reception point data in a plurality of storage sections in order until the signal level becomes a predetermined value (Vref). An average value of the two zero crossing points before and after the signal level becomes Vref can be adopted as a reception point, the propagation time with a small error of up and down offset, etc., is measured, and it is made possible to realize power saving operation by shortening the measurement time.
摘要:
The present invention provides an ultrasonic flowmeter comprising an oscillator and an oscillation start unit for accelerating oscillation of the oscillator. The oscillation start unit accelerates the oscillation of the oscillator so that pulses from the oscillator will become stable in a shorter time period. The accuracy of flow rate measurement is improved. Electric power can be saved where the flow rate is measured repeatedly at intervals.
摘要:
A measurement control section includes a time measuring section for controlling an operation of measuring a travel time of an ultrasonic wave. The measurement control section operations, based on a high rate clock signal supplied from a ceramic oscillation circuit during the time measuring operation. A clock control section stops the high rate clock signal supplied from the ceramic oscillation circuit every time when the time measuring section completes its time measuring operation, and uses a low rate clock signal supplied from a quartz oscillation circuit to count a standby time between the end of measuring the travel time and the start of carrying out the next measuring operation.
摘要:
It is desirable that an operation of an oscillator used for measuring propagation time of ultrasonic waves in an ultrasonic flowmeter be an intermittent operation in order to achieve electric power savings. However, pulse stability of the oscillator requires time, so that there is a problem that the intermittent operation cannot be performed. An ultrasonic flowmeter comprising an oscillator 60, and an oscillation start unit 61 for accelerating oscillation of the oscillator, constructed so that a pulse of the oscillator oscillated by the oscillation start unit 61 is used in measurement of propagation time of ultrasonic waves.
摘要:
Switching a transmitting and receiving direction of two transducers (2,3) in the forward and the reverse direction, a time differential memory part (17b) storing a propagation time differential every K times a unit measurement process being executed, the propagation time differential being a differential between a propagation time of the ultrasonic wave signal in a forward direction and in a reverse direction, a flow rate calculating part (15) calculating a flow rate of a passing fluid based on a lump sum of propagation times in both the forward and the reverse directions obtained at least every K times of a unit measurement process being executed, an estimating part (18) estimating a change in a momentary flow rate of the fluid based on the time differential obtained every K times of the unit measurement process being executed and storing thereof in a time differential memory part (17b), thus obtaining an accurate flow rate and detecting the change in the momentary flow rate.
摘要:
Switching a transmitting and receiving direction of two transducers (2,3) in the forward and the reverse direction, a time differential memory part (17b) storing a propagation time differential every K times a unit measurement process being executed, the propagation time differential being a differential between a propagation time of the ultrasonic wave signal in a forward direction and in a reverse direction, a flow rate calculating part (15) calculating a flow rate of a passing fluid based on a lump sum of propagation times in both the forward and the reverse directions obtained at least every K times of a unit measurement process being executed, an estimating part (18) estimating a change in a momentary flow rate of the fluid based on the time differential obtained every K times of the unit measurement process being executed and storing thereof in a time differential memory part (17b), thus obtaining an accurate flow rate and detecting the change in the momentary flow rate.
摘要:
A flow rate measurement apparatus includes: a plurality of flow paths 13 provided between an inflow port 11 and an outflow port 12; opening/closing sections 14 for opening/closing the plurality of flow paths 13; measurement sections 15 for measuring a flow rate of fluid flowing through at least one of the plurality of flow paths 13; and a control section 17 for controlling the opening/closing sections 14 and the measurement sections 15; The control section 17 includes a gain adjustment section 16 for correcting a gain of the measurement section 15 in a flow path which is closed by the opening/closing section 14.
摘要:
A safety control apparatus positively discriminates between an object and a person through the detection of subtle physical movement corresponding to the heart activity and the breathing unique to the life activity of the human body from a output signal of a vibration sensor disposed on a seat so as to accurately decide whether or not a person is present. The maintenance of the safe operation of the moving vehicle can be realized. The starting of the moving vehicle is inhibited if the reserved seat is determined to be unoccupied in accordance with the decision result. In the case where the person is present, the moving of the vehicle is not started before the engagement of the seat belt has been detected.