摘要:
An outer surface of a plasmon generator includes: a plasmon exciting part that faces an evanescent light generating surface with a predetermined distance therebetween; and a front end face located in a medium facing surface. The plasmon generator has: first and second sidewall parts that are connected to the plasmon exciting part and increase in distance from each other with increasing distance from the plasmon exciting part; and at least one extended portion connected to an edge of at least one of the first and second sidewall parts opposite from the plasmon exciting part. A magnetic pole has a portion interposed between the first and second sidewall parts. The front end face includes first and second portions lying at ends of the first and second sidewall parts and connected to each other into a V-shape. An end face of the magnetic pole has a portion interposed between the first and second portions of the front end face.
摘要:
A thermally-assisted magnetic recording head includes a waveguide through which a light for exciting surface plasmon propagates, a near-field optical device configured to be coupled with the light in a surface plasmon mode and to emit near-field light from a near-field-light-generating end surface that forms a portion of an opposed-to-medium surface, and a magnetic pole for generating write field from its end on the opposed-to-medium surface side. The near-field optical device includes a contact-to-waveguide surface having a contact to the waveguide, and a propagation edge provided on a side opposite to the contact-to-waveguide surface, extending to the near-field-light-generating end surface, and configured to propagate there on the surface plasmon excited by the light. A gap between a near-field optical device-opposed surface of the magnetic pole and the propagation edge of the near-field optical device is larger at a section far from the end on the opposed-to-medium surface side than that at a section near the on the opposed-to-medium surface side.
摘要:
Provided is a thermally-assisted magnetic recording head capable of setting the near-field light (NFL-) emission point to be sufficiently close to the write-field-generating portion. The head comprises a magnetic pole, a waveguide propagating light, and a NFL-generator coupled with the light in surface plasmon mode. The NFL-generator comprises a propagation edge extending to the NFL-generating end surface, at least a portion of the propagation edge being opposed to the waveguide with a distance, and the magnetic pole has a surface contact with a surface portion of the NFL-generator including no propagation edge. Therefore, the distance between the magnetic-pole end surface and the NFL-generating end surface becomes zero. The propagation edge is not contacted with the magnetic pole. Accordingly, the surface plasmon can propagate along on the propagation edge without being absorbed by the pole. Thus, the NFL-emission point is ensured to be at the end point of the propagation edge.
摘要:
A thermally-assisted magnetic recording head includes a waveguide, a near-field optical device which emits near-field light from a near-field-light-generating end surface that forms a portion of an opposed-to-medium surface, and a magnetic pole generates write field from its end on the opposed-to-medium surface side. The near-field optical device includes a contact-to-waveguide surface, and a propagation edge configured to propagate there on the surface plasmon excited by the light. A gap between a near-field optical device-opposed surface of the magnetic pole and the propagation edge of the near-field optical device is larger at a section far from the end on the opposed-to-medium surface side than that at a section near the opposed-to-medium surface side.
摘要:
Provided is a thermally-assisted magnetic recording head capable of setting the near-field light (NFL-) emission point to be sufficiently close to the write-field-generating portion. The head comprises a magnetic pole, a waveguide propagating light, and a NFL-generator coupled with the light in surface plasmon mode. The NFL-generator comprises a propagation edge extending to the NFL-generating end surface, at least a portion of the propagation edge being opposed to the waveguide with a distance, and the magnetic pole has a surface contact with a surface portion of the NFL-generator including no propagation edge. Therefore, the distance between the magnetic-pole end surface and the NFL-generating end surface becomes zero. The propagation edge is not contacted with the magnetic pole. Accordingly, the surface plasmon can propagate along on the propagation edge without being absorbed by the pole. Thus, the NFL-emission point is ensured to be at the end point of the propagation edge.
摘要:
The magnetic read write head has a read head and a write head, each having an end face exposed on an air bearing surface. The write head performs heat assist magnetic recording, and is provided with: a magnetic pole having an end face exposed on the air bearing surface; a waveguide extending toward the air bearing surface to propagate light; and a plasmon generator provided between the magnetic pole and the waveguide, and generating near-field light based on the light propagated through the waveguide to emit the generated near-field light from the air bearing surface. The waveguide is surrounded by a clad layer, and the magnetic pole is in contact with a heat sink having a heat conductivity higher than that of the clad layer. Although the near-field light causes temperature rise, heat energy from the plasmon generator to the magnetic pole is released through the heat sink.
摘要:
A plasmon generator has an outer surface including a propagation edge, and has a near-field light generating part lying at an end of the propagation edge and located in a medium facing surface. The propagation edge faces an evanescent light generating surface of a waveguide's core with a predetermined distance therebetween and extends in a direction perpendicular to the medium facing surface. The propagation edge is arc-shaped in a cross section parallel to the medium facing surface. The plasmon generator includes a shape changing portion in which a radius of curvature of the propagation edge in the cross section parallel to the medium facing surface continuously decreases with decreasing distance to the medium facing surface.
摘要:
A heat-assisted magnetic write head includes a magnetic pole having an end surface exposed at an air bearing surface, a waveguide extending toward the air bearing surface to propagate light, and a plasmon generator provided between the magnetic pole and the waveguide, and generating near-field light from the air bearing surface, based on the light propagated through the waveguide. The plasmon generator has an end portion exposed at the air bearing surface or located in close proximity to the air bearing surface, the end portion having a minimum thickness in a region close to the waveguide.
摘要:
A plasmon generator has an outer surface including a plasmon exciting part that faces an evanescent light generating surface of a waveguide. The outer surface further includes first and second inclined surfaces that increase in distance from each other with increasing distance from the plasmon exciting part, and a front end face. The front end face has first and second portions that are connected to each other into a V-shape. The first portion includes a first side lying at an end of the first inclined surface. The second portion includes a second side lying at an end of the second inclined surface. An angle formed between a lower part of the first side and a lower part of the second side is smaller than that formed between an upper part of the first side and an upper part of the second side.
摘要:
A plasmon generator has an outer surface including a propagation edge, and has a near-field light generating part lying at an end of the propagation edge and located in a medium facing surface. The propagation edge faces an evanescent light generating surface of a waveguide's core with a predetermined distance therebetween and extends in a direction perpendicular to the medium facing surface. The propagation edge is arc-shaped in a cross section parallel to the medium facing surface. The plasmon generator includes a shape changing portion in which a radius of curvature of the propagation edge in the cross section parallel to the medium facing surface continuously decreases with decreasing distance to the medium facing surface.