摘要:
A coated fiber strand includes one or more coating layers located directly or indirectly on the strand and at least one heterogeneous region present in or on one or more of the coating layer(s). The heterogeneous region(s) preferably comprises a material useful for coding of the fiber. One particularly preferred embodiment relates to an optical fiber having a primary coating layer and a secondary coating layer where the heterogeneous region(s) defines one or more colored stripes in or on the secondary coating layer. A method for forming a coated fiber, such as an optical fiber, includes introducing at least one coating layer onto a fiber strand such that one or more coating layers directly or indirectly cover at least a portion of the surface of the strand. The method further includes introducing at least one heterogeneous region into or onto a coating layer(s). The fiber can then be treated, e.g., cured so as to provide a desired product. By this method, a desired functionality, e.g., coding, can be introduced onto a fiber without adversely effecting subsequent processing steps, e.g., curing of the coating layer(s).
摘要:
A coated fiber strand including at least one heterogeneous region present in one or more coating layers. The heterogeneous region(s) preferably comprises a material useful for coding of the fiber. The optical fiber can include a primary coating layer and a secondary coating layer where the heterogeneous region(s) defines one or more colored stripes in or on the secondary coating layer. A method for forming a coated fiber, such as an optical fiber, includes introducing at least one coating layer onto a fiber strand such that one or more coating layers cover a portion of the surface of the strand. At least one heterogeneous region is introduced into or onto one or more coating layers, and the strand is cured to provide a desired product. A desired functionality, e.g., coding, can thus be introduced onto a fiber without adversely effecting subsequent processing steps, e.g., curing of the coating layer(s).
摘要:
An indoor/outdoor dry core fiber optic cable or sub-unit that incorporates a plurality of optical fibers surrounded by a buffer material wound helically or in reverse-oscillated lay about a water blocking central strength member at a first tension and a first lay length and a water blocking strength member layer wound helically or in reverse-oscillated lay about the optical fibers at a second tension and a second lay length such that the combination of the buffer material, first tension, first lay length, second tension and second lay length result in an indoor/outdoor dry core optical cable capable of meeting ICEA-696 standards.
摘要:
A method for splicing an improved strength tape having longitudinally extended strands comprises the trimming or patterning of the strands of the respective ends that are to be joined so that the ends can be mated together in a meshing arrangement. The two ends are placed in a splicing tray. An adhesive film is interposed between the two ends and the splice tray is closed. The splice tray is placed in a compression molding press which applies a predetermined time-temperature-pressure treatment profile which cures the adhesive film. The resulting splice has essentially the same physical dimensions of the strength tape, and similar stiffness characteristics to that of the strength tape. Further, the strength of the splice is more than sufficient for use in a communication cable. Because the complete splice process can be completed in less than 4 to 5 minutes, the splice can be performed on-line with the use of a strength tape accumulator.
摘要:
An optical fiber [10] having protective coating materials [14, 15], which surround an elongated strand of glass [12], is designed for improved strippability. Preferably, the optical fiber includes two layers (primary and secondary) of radiation-cured polymeric materials surrounding the glass fiber. The primary layer has an equilibrium (in-situ) modulus that resides within the range 120 to 500 psi. Additionally, the primary coating has a pull-out force (adhesion) that is less than 1.2 pounds per centimeter of length (lb/cm), and preferably resides within the range 0.5 to 1.0 lb/cm. It has been found that by increasing the equilibrium modulus, delamination resistance is increased. This has allowed designers to decrease pull-out force while maintaining a suitable delamination resistance. As a result, coating materials can now be stripped away from a glass fiber with little or no residue. This is particularly important in situations where a group of such fibers are bound together in an array [20] by a matrix bonding material [21].