摘要:
A method for the computer-assisted exploration of states of a technical system is provided. The states of the technical system are run by carrying out an action in a respective state of the technical system, the action leading to a new state. A safety function and a feedback rule are used to ensure that a large volume of data of states and actions is run during exploration and that at the same time no inadmissible actions occur which could lead directly or indirectly to the technical system being damaged or to a defective operating state. The method allows a large number of states and actions relating to the technical system to be collected and may be used for any technical system, especially the exploration of states in a gas turbine. The method may be used both in the real operation and during simulation of the operation of a technical system.
摘要:
A method for the computer-aided learning of a control of a technical system is provided. An operation of the technical system is characterized by states which the technical system can assume during operation. Actions are executed during the operation and convert a relevant state into a subsequent state. The method is characterized in that, when learning the control, suitable consideration is given to the statistical uncertainty of the training data. This is achieved in that the statistical uncertainty of a quality function which models an optimal operation of the technical system is specified by an uncertainty propagation and is incorporated into an action selection rule when learning. By a correspondingly selectable certainty parameter, the learning method can be adapted to different application scenarios which vary in statistical requirements. The method can be used for learning the control of an operation of a turbine, in particular a gas turbine.
摘要:
A method for computer-supported control and/or regulation of a technical system is provided. In the method a reinforcing learning method and an artificial neuronal network are used. In a preferred embodiment, parallel feed-forward networks are connected together such that the global architecture meets an optimal criterion. The network thus approximates the observed benefits as predictor for the expected benefits. In this manner, actual observations are used in an optimal manner to determine a quality function. The quality function obtained intrinsically from the network provides the optimal action selection rule for the given control problem. The method may be applied to any technical system for regulation or control. A preferred field of application is the regulation or control of turbines, in particular a gas turbine.
摘要:
A method for a computer-aided control of a technical system is provided. The method involves use of a cooperative learning method and artificial neural networks. In this context, feed-forward networks are linked to one another such that the architecture as a whole meets an optimality criterion. The network approximates the rewards observed to the expected rewards as an appraiser. In this way, exclusively observations which have actually been made are used in optimum fashion to determine a quality function. In the network, the optimum action in respect of the quality function is modeled by a neural network, the neural network supplying the optimum action selection rule for the given control problem. The method is specifically used to control a gas turbine.