摘要:
Content platform management is enhanced by logically partitioning a physical cluster that comprises a redundant array of independent nodes. Using an interface, an administrator defines one or more “tenants” within the archive cluster, wherein a tenant has a set of attributes including, for example, namespaces, administrative accounts, data access accounts, and a permission mask. A namespace is a logical partition of the cluster that serves as a collection of objects typically associated with at least one defined application. Each namespace has a private file system such that access to one namespace (and its associated objects) does not enable a user to access objects in another namespace. A namespace has capabilities (e.g., read, write, delete, purge, and the like) that a namespace administrator can choose to enable or disable for a given data account. Using the interface, an administrator for the tenant creates and manages namespaces such that the cluster then is logically partitioned into a set of namespaces, wherein one or more namespaces are associated with a given tenant. This approach enables a user to segregate cluster data into logical partitions. Using the administrative interface, a namespace associated with a given tenant is selectively configured without affecting a configuration of at least one other namespace in the set of namespaces. This architecture enables support for many top level tenants, with multiple namespaces per tenant, and wherein configuration is effected at the level of a namespace.
摘要:
Content platform management is enhanced by logically partitioning a physical cluster that comprises a redundant array of independent nodes. Using an interface, an administrator defines one or more “tenants” within the archive cluster, wherein a tenant has a set of attributes including, for example, namespaces, administrative accounts, data access accounts, and a permission mask. A namespace is a logical partition of the cluster that serves as a collection of objects typically associated with at least one defined application. Each namespace has a private file system such that access to one namespace (and its associated objects) does not enable a user to access objects in another namespace. A namespace has capabilities (e.g., read, write, delete, purge, and the like) that a namespace administrator can choose to enable or disable for a given data account. Using the interface, an administrator for the tenant creates and manages namespaces such that the cluster then is logically partitioned into a set of namespaces, wherein one or more namespaces are associated with a given tenant. This approach enables a user to segregate cluster data into logical partitions. Using the administrative interface, a namespace associated with a given tenant is selectively configured without affecting a configuration of at least one other namespace in the set of namespaces. This architecture enables support for many top level tenants, with multiple namespaces per tenant, and wherein configuration is effected at the level of a namespace.