摘要:
According to one embodiment, a method for displaying an image in a light processing system includes receiving an image to be displayed. The method also includes generating a light from a light source. The method further includes receiving the light at a spatial light modulator having a group of pixels. The method further includes displaying the image along an optical path. The method further includes automatically defocusing the image by adjusting at least one of a group of optical elements along the optical path, thereby reducing pixel noise in the displayed image.
摘要:
Methods for improving video images by making real-time gamma correction adjustments to such images are described. More particularly, gamma correction adjustments may be optimized for each individual frame of a video image by first segregating the pixels of an image according to brightness. The segregated pixels may then be used in computing weighting calculations, which modify the transfer functions used for image display. In some embodiments, the video signal may be conditioned between the standard gamma curve and the S-shaped gamma curve used in mapping video signal input to intensity output. In this manner, frame-to-frame gamma correction adjustments can be made, thereby optimizing the resulting image. Related systems for making frame-to-frame gamma correction adjustments are also described.
摘要:
In accordance with the teachings of the present invention, a system and method for local value adjustment are provided. In one embodiment, the method includes identifying a hue, saturation, and brightness value for each pixel of an image, determining whether the hue and saturation for each pixel fall within a first predetermined set of hue and saturation combinations, determining whether the brightness value for each pixel of the image falls within a predetermined set of brightness values, and selectively applying a gain to the saturation of each pixel based upon the determination of whether the hue and saturation value of the pixel falls within the first predetermined set of hue and saturation combinations and the determination of whether the brightness value of the pixel falls within the predetermined set of brightness values. The method further comprises decimating the image into multiple localized regions, determining a mean brightness value for each localized region, determining whether the hue and saturation for each pixel fall within a second predetermined set of hue and saturation combinations, and selectively increasing the perceived contrast of the image around the mean brightness value for each localized region by applying a transfer function to each pixel of the image based upon the determination of whether the hue and saturation of the pixel fall within the second predetermined set of hue and saturation combinations.
摘要:
In accordance with the teachings of the present invention, a system and method for local value adjustment are provided. In one embodiment, the method includes identifying a hue, saturation, and brightness value for each pixel of an image, determining whether the hue and saturation for each pixel fall within a first predetermined set of hue and saturation combinations, determining whether the brightness value for each pixel of the image falls within a predetermined set of brightness values, and selectively applying a gain to the saturation of each pixel based upon the determination of whether the hue and saturation value of the pixel falls within the first predetermined set of hue and saturation combinations and the determination of whether the brightness value of the pixel falls within the predetermined set of brightness values. The method further comprises decimating the image into multiple localized regions, determining a mean brightness value for each localized region, determining whether the hue and saturation for each pixel fall within a second predetermined set of hue and saturation combinations, and selectively increasing the perceived contrast of the image around the mean brightness value for each localized region by applying a transfer function to each pixel of the image based upon the determination of whether the hue and saturation of the pixel fall within the second predetermined set of hue and saturation combinations.
摘要:
A process for treating carbide tool bits used by the electronics industry for printed circuit board (“PCB”) fabrication combines a cryogenic cycle with two or more tempering cycles. The tool bits are subjected to a cryogenic cycle having a ramp down phase during which the tool bits are ramped down in a dry cryogenic environment to about −300° F. over between about six (6) and eight (8) hours, followed by a cryogenic hold phase during which the tool bits are held at about −300° F. over between about twenty-four (24) and thirty-six (36) hours, followed by a cryogenic ramp up phase during which the tool bits are ramped up to about −100° F. over between about six (6) and eight (8) hours. That is followed by a first tempering cycle having a ramp up phase during which the tool bits are ramped up in a dry tempering environment to about 350° F. over about one-half (½) hour, followed by a hold phase during which the tool bits are held at about 350° F. over about two (2) hours, followed by a ramp down phase during which the tool bits are ramped down to below about 120° F. but not generally all the way to the ambient temperature over between about two (2) and three-and-half (3½) hours. A second tempering cycle follows that and it has a time-temperature profile fairly comparable to the first tempering cycle.
摘要:
A process for treating a conductor winding component of a dynamoelectric device incorporates a cryogenic cycle having a ramp down phase during which the conductor winding component is ramped down from at least about −100° F. in a dry cryogenic environment to about −300° F. over several hours, preferably greater than five (5) hours and including seven (7) hours or more, followed by a cryogenic hold phase during which the conductor winding component is held at about −300° F. over an additional several hours, preferably greater than twenty-four (24) hours and including thirty-six (36) hours or more, followed by a cryogenic ramp up phase during which the conductor winding component is ramped up to about −200° F. over another several hours, preferably greater than twelve (12) hours and including eighteen (18) hours or more.
摘要:
In accordance with the teachings of the present invention, a system and method for local value adjustment are provided. In one embodiment, the method includes identifying a hue, saturation, and brightness value for each pixel of an image, determining whether the hue and saturation for each pixel fall within a first predetermined set of hue and saturation combinations, determining whether the brightness value for each pixel of the image falls within a predetermined set of brightness values, and selectively applying a gain to the saturation of each pixel based upon the determination of whether the hue and saturation value of the pixel falls within the first predetermined set of hue and saturation combinations and the determination of whether the brightness value of the pixel falls within the predetermined set of brightness values. The method further comprises decimating the image into multiple localized regions, determining a mean brightness value for each localized region, determining whether the hue and saturation for each pixel fall within a second predetermined set of hue and saturation combinations, and selectively increasing the perceived contrast of the image around the mean brightness value for each localized region by applying a transfer function to each pixel of the image based upon the determination of whether the hue and saturation of the pixel fall within the second predetermined set of hue and saturation combinations.
摘要:
A method and system for communicating and rendering stereoscopic or dual-view images are provided. In one embodiment, a method rendering stereoscopic images includes alternating, on a display, left and right perspectives of an image. Each of the left and right perspectives corresponds to a respective array of pixels on the display such that the left perspective is offset from a right perspective by less than a pixel width. The method further includes shuttering a portion of the light provided from the display in sequence with the alternating of the left and right perspectives if the image.