Method and system for using a statistical language model and an action classifier in parallel with grammar for better handling of out-of-grammar utterances
    4.
    发明授权
    Method and system for using a statistical language model and an action classifier in parallel with grammar for better handling of out-of-grammar utterances 有权
    与语法并行使用统计语言模型和动作分类器的方法和系统,以更好地处理语法外语

    公开(公告)号:US08396713B2

    公开(公告)日:2013-03-12

    申请号:US11742149

    申请日:2007-04-30

    IPC分类号: G10L15/00

    摘要: A method (and system) of handling out-of-grammar utterances includes building a statistical language model for a dialog state using, generating sentences and semantic interpretations for the sentences using finite state grammar, building a statistical action classifier, receiving user input, carrying out recognition with the finite state grammar, carrying out recognition with the statistical language model, using the statistical action classifier to find semantic interpretations, comparing an output from the finite state grammar and an output from the statistical language model, deciding which output of the output from the finite state grammar and the output from the statistical language model to keep as a final recognition output, selecting the final recognition output, and outputting the final recognition result, wherein the statistical action classifier, the finite state grammar and the statistical language model are used in conjunction to carry out speech recognition and interpretation.

    摘要翻译: 处理语法语法的方法(和系统)包括使用有限状态语法为对话状态建立统计语言模型,使用有限状态语法生成句子和语义解释,构建统计动作分类器,接收用户输入,携带 使用有限状态语法进行识别,使用统计语言模型进行识别,使用统计动作分类器来查找语义解释,比较有限状态语法的输出和来自统计语言模型的输出,决定输出的哪个输出 从有限状态语法和统计语言模型的输出,作为最终识别输出,选择最终识别输出,并输出最终识别结果,其中统计动作分类器,有限状态语法和统计语言模型是 结合使用来进行语音识别和解释 。

    METHOD AND SYSTEM FOR PROMPT CONSTRUCTION FOR SELECTION FROM A LIST OF ACOUSTICALLY CONFUSABLE ITEMS IN SPOKEN DIALOG SYSTEMS
    5.
    发明申请
    METHOD AND SYSTEM FOR PROMPT CONSTRUCTION FOR SELECTION FROM A LIST OF ACOUSTICALLY CONFUSABLE ITEMS IN SPOKEN DIALOG SYSTEMS 有权
    用于从SPOKEN对话系统中的声音可混合项目列表中选择的提供构建的方法和系统

    公开(公告)号:US20080281598A1

    公开(公告)日:2008-11-13

    申请号:US11746087

    申请日:2007-05-09

    IPC分类号: G10L11/00

    CPC分类号: G10L15/22 G10L15/187

    摘要: A method (and system) of determining confusable list items and resolving this confusion in a spoken dialog system includes receiving user input, processing the user input and determining if a list of items needs to be played back to the user, retrieving the list to be played back to the user, identifying acoustic confusions between items on the list, changing the items on the list as necessary to remove the acoustic confusions, and playing unambiguous list items back to the user.

    摘要翻译: 一种确定可混淆列表项目并在口头对话系统中解决这种混淆的方法(和系统)包括接收用户输入,处理用户输入并确定是否需要向用户回放项目列表,将列表检索为 播放给用户,识别列表上的项目之间的声音混淆,根据需要更改列表上的项目以消除声音混淆,并将明确的列表项目播放回用户。

    METHOD AND SYSTEM FOR USING A STATISTICAL LANGUAGE MODEL AND AN ACTION CLASSIFIER IN PARALLEL WITH GRAMMAR FOR BETTER HANDLING OF OUT-OF-GRAMMAR UTTERANCES
    6.
    发明申请
    METHOD AND SYSTEM FOR USING A STATISTICAL LANGUAGE MODEL AND AN ACTION CLASSIFIER IN PARALLEL WITH GRAMMAR FOR BETTER HANDLING OF OUT-OF-GRAMMAR UTTERANCES 有权
    使用统计语言模型的方法和系统和与GRAMMAR并行的动作分类器,用于更好地处理超出灰度的UTTERANCES

    公开(公告)号:US20080270135A1

    公开(公告)日:2008-10-30

    申请号:US11742149

    申请日:2007-04-30

    IPC分类号: G10L15/18

    摘要: A method (and system) of handling out-of-grammar utterances includes building a statistical language model for a dialog state using, generating sentences and semantic interpretations for the sentences using finite state grammar, building a statistical action classifier, receiving user input, carrying out recognition with the finite state grammar, carrying out recognition with the statistical language model, using the statistical action classifier to find semantic interpretations, comparing an output from the finite state grammar and an output from the statistical language model, deciding which output of the output from the finite state grammar and the output from the statistical language model to keep as a final recognition output, selecting the final recognition output, and outputting the final recognition result, wherein the statistical action classifier, the finite state grammar and the statistical language model are used in conjunction to carry out speech recognition and interpretation.

    摘要翻译: 处理语法语法的方法(和系统)包括使用有限状态语法为对话状态建立统计语言模型,使用有限状态语法生成句子和语义解释,构建统计动作分类器,接收用户输入,携带 使用有限状态语法进行识别,使用统计语言模型进行识别,使用统计动作分类器来查找语义解释,比较有限状态语法的输出和来自统计语言模型的输出,决定输出的哪个输出 从有限状态语法和统计语言模型的输出,作为最终识别输出,选择最终识别输出,并输出最终识别结果,其中统计动作分类器,有限状态语法和统计语言模型是 结合使用来进行语音识别和解释 。

    Compressing Feature Space Transforms
    7.
    发明申请
    Compressing Feature Space Transforms 有权
    压缩特征空间变换

    公开(公告)号:US20110144991A1

    公开(公告)日:2011-06-16

    申请号:US12636033

    申请日:2009-12-11

    IPC分类号: G10L15/06

    CPC分类号: G10L19/0212 G10L19/032

    摘要: Methods for compressing a transform associated with a feature space are presented. For example, a method for compressing a transform associated with a feature space includes obtaining the transform including a plurality of transform parameters, assigning each of a plurality of quantization levels for the plurality of transform parameters to one of a plurality of quantization values, and assigning each of the plurality of transform parameters to one of the plurality of quantization values to which one of the plurality of quantization levels is assigned. One or more of obtaining the transform, assigning of each of the plurality of quantization levels, and assigning of each of the transform parameters are implemented as instruction code executed on a processor device. Further, a Viterbi algorithm may be employed for use in non-uniform level/value assignments.

    摘要翻译: 提出了用于压缩与特征空间相关联的变换的方法。 例如,用于压缩与特征空间相关联的变换的方法包括获得包括多个变换参数的变换,将多个变换参数的多个量化级别中的每一个分配给多个量化值中的一个,以及分配 所述多个变换参数中的每一个变换为分配了所述多个量化级中的一个的所述多个量化值之一。 获得变换,分配多个量化级别中的每一个以及每个变换参数的分配中的一个或多个被实现为在处理器设备上执行的指令代码。 此外,维特比算法可用于非均匀级/值分配中。

    Natural language system and method based on unisolated performance metric
    8.
    发明授权
    Natural language system and method based on unisolated performance metric 有权
    自然语言系统和基于非隔离性能度量的方法

    公开(公告)号:US07574358B2

    公开(公告)日:2009-08-11

    申请号:US11067819

    申请日:2005-02-28

    IPC分类号: G10L15/00

    CPC分类号: G10L15/18 G10L15/065

    摘要: A natural language business system and method is developed to understand the underlying meaning of a person's speech, such as during a transaction with the business system. The system includes a speech recognition engine, and action classification engine, and a control module. The control module causes the system to execute an inventive method wherein the speech recognition and action classification models may be recursively optimized on an unisolated performance metric that is pertinent to the overall performance of the natural language business system, as opposed to the isolated model-specific criteria previously employed.

    摘要翻译: 开发一种自然语言业务系统和方法,以了解一个人的言论的基本含义,例如在与业务系统的交易期间。 该系统包括语音识别引擎,动作分类引擎和控制模块。 控制模块使得系统执行本发明的方法,其中语音识别和动作分类模型可以针对与自然语言业务系统的整体性能相关的非隔离性能度量递归地优化,而不是孤立的模型特定 以前使用的标准。

    Forced/predictable adaptation for speech recognition
    9.
    发明授权
    Forced/predictable adaptation for speech recognition 有权
    强制/可预测的语音识别适应

    公开(公告)号:US08838448B2

    公开(公告)日:2014-09-16

    申请号:US13440176

    申请日:2012-04-05

    IPC分类号: G10L15/06 G10L15/00

    CPC分类号: G10L15/07

    摘要: A method is described for use with automatic speech recognition using discriminative criteria for speaker adaptation. An adaptation evaluation is performed of speech recognition performance data for speech recognition system users. Adaptation candidate users are identified based on the adaptation evaluation for whom an adaptation process is likely to improve system performance.

    摘要翻译: 描述了一种使用自动语音识别的方法,使用用于说话者适应的歧视性标准。 对语音识别系统用户的语音识别性能数据进行适应评估。 适应候选用户是根据对自适应过程有可能提高系统性能的适应性评估来确定的。

    SPARSE MAXIMUM A POSTERIORI (MAP) ADAPTION
    10.
    发明申请
    SPARSE MAXIMUM A POSTERIORI (MAP) ADAPTION 有权
    SPARSE MAXIMUM A POSTERIORI(MAP)ADAPTION

    公开(公告)号:US20140257809A1

    公开(公告)日:2014-09-11

    申请号:US14284738

    申请日:2014-05-22

    IPC分类号: G10L15/14

    摘要: Techniques disclosed herein include using a Maximum A Posteriori (MAP) adaptation process that imposes sparseness constraints to generate acoustic parameter adaptation data for specific users based on a relatively small set of training data. The resulting acoustic parameter adaptation data identifies changes for a relatively small fraction of acoustic parameters from a baseline acoustic speech model instead of changes to all acoustic parameters. This results in user-specific acoustic parameter adaptation data that is several orders of magnitude smaller than storage amounts otherwise required for a complete acoustic model. This provides customized acoustic speech models that increase recognition accuracy at a fraction of expected data storage requirements.

    摘要翻译: 本文公开的技术包括使用最大后验(MAP)适应过程,该过程施加稀疏约束以基于相对较小的训练数据集来为特定用户生成声学参数适配数据。 所得到的声学参数自适应数据识别来自基线声学语音模型的相对小部分声学参数的变化,而不是对所有声学参数的改变。 这导致用户特定的声学参数自适应数据比完全声学模型所需的存储量小几个数量级。 这提供了定制的声学语音模型,其提高了预期数据存储要求的一小部分的识别精度。