摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Coherent detection of a received EM signal using universal frequency translation (UFT) is described herein. The received EM signal is sampled according to a sub-harmonic LO signal, where the LO signal is in frequency and phase coherence with the received EM signal. The coherent receiver includes a down-converter/demodulator and a synthesizer/loop filter that are both implemented using UFT technology. The down-converter/demodulator samples the EM input signal using a UFT module according to the coherent sub-harmonic LO signal that is generated by the synthesizer/loop filter. The synthesizer/loop filter generates the coherent LO signal using a phase detector, a loop filter, and an up-converter. The phase detector and up-converter are implemented using UFT modules.
摘要:
A method and system for converting an optical signal to electrical information signals, including demodulated baseband information signals and modulated baseband signals at multiple harmonics. In an embodiment, the optical information signal is amplitude modulated with information. The method converts an optical signal to electrical charge, accumulates the electrical charge, and periodically transfers the accumulated electrical charge to a storage device, whereby the periodically transferred electrical charge forms the electrical signals. An exemplary system includes an optical transducer and a universal frequency translator coupled to an output of the optical transducer. The optical transducer receives an optical signal and converts the optical signal to electrical charge. The universal frequency translator periodically transfers energy from the electrical charge and forms the electrical signals from the transferred energy. In an embodiment, the present invention converts an I and Q optical signal to electrical signals. In an embodiment, the present invention converts an optical signal to an RF electrical signal using relatively few components, while preserving information content.
摘要:
A balanced transmitter up-converts a baseband signal directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the baseband signal in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the baseband signal. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal. A bandpass filter can then be utilized to select the desired harmonic of interest from the harmonically rich signal. The sampling modules that perform the sampling can be configured in either a series or a shunt configuration. In embodiments of the invention, DC offset voltages are minimized between the sampling modules to minimize or prevent carrier insertion into the harmonic images.