摘要:
An integrated electrophysicology catheter workstation and cardiac stimulator having a cardiac electrical waveform response monitor (11) having at least two modes of operation. During a first mode of operation the monitor receives, detects, processes, stores, and displays EKG data in an ordinary fashion. During a second mode of operation one or more components and/or signal pathways are automatically modified to essentially de-sense part or all of system to thereby prevent a cardiac stimulation pulse from degrading the operability of the monitor. This, in turn, permits the monitor to utilize the first mode of operation more rapidly following application of a stimulation pulse and thereby glean useful post-pulse EKG data.
摘要:
An improved medical implant device is provided which has a plurality of micro-electrodes. The use of a plurality of micro-electrodes allows a clinically effective electrical stimulation pathway to be selected once the implant is positioned within or adjacent to the tissue to be treated even if the implant is not optimally placed or located. Thus, in cases where the implant is not optimally placed, it is not necessary to remove the implant and then reposition it within or adjacent to the tissue to be treated, thereby reducing stress to the patient caused by additional surgery. Moreover, using the micro-electrodes of this invention, directional electrostimulation can be provided to the tissue to be treated. Implant devices with a plurality of micro-electrodes are provided which are especially adapted for use in reducing the frequency and/or severity of neurological tremors. Other implant devices having micro-electrodes are provided which are especially adapted for electrostimulation and/or electrical monitoring of endo-abdominal tissue or viscera.
摘要:
Apparatus and method for stimulating neuromuscular tissue in the stomach. The neuromuscular stimulator stimulates the neuromuscular tissue by applying current-controlled electrical pulses. A voltage sensor detects the voltage across the neuromuscular tissue to determine if the voltage meets a predetermined voltage threshold. A control circuit adjusts the current-controlled pulse if the voltage is found to meet the voltage threshold, such that the voltage does not exceed the voltage threshold. A voltage-controlled pulse may also be applied to the tissue. A current sensor would then detect whether the current on the neuromuscular tissue meets a predetermined current threshold, and a control circuit adjusts the voltage-controlled pulse such that the current does not exceed the current threshold. A real time clock may be provided which supplies data corresponding to the time of day during the treatment period. A programmable calendar stores parameters of the stimulating pulse, wherein the parameters have a reference to the time of day.